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Background: Most biological samples are cell mixtures.
Some basic questions are still unanswered about analyzing
these heterogeneous samples using gene expression mi-
croarray technology (MAT). How meaningful is a cell
mixture’s overall gene expression profile (GEP)? Is it nec-
essary to purify the cells of interest before microarray
analysis, and how much purity is needed? How much does
the purification itself distort the GEP, and how well can
the GEP of a small cell subset be recovered?
Methods: Model cell mixtures with different cell ratios
were analyzed by both spotted and Affymetrix MAT. GEP
distortion during cell purification and GEPs of purified
cells were studied. CD34� cord blood cells were purified
and analyzed by MAT.
Results: GEPs for mixed cell populations were found to
mirror the cell ratios in the mixture. Over 75% pure

samples were indistinguishable from pure cells by their
overall GEP. Cell purification preserved the GEP. The
GEPs of small cell subsets could be accurately recovered
by cell sorting both from model cell mixtures and from
cord blood.
Conclusions: Purification of small cell subsets from a
mixture prior to MAT is necessary for meaningful results.
Even completely hidden GEPs of small cell subpopulations
can be recovered by cell sorting. © 2004 Wiley-Liss, Inc.
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Gene expression microarray technology (MAT) is a rap-
idly developing analytical tool in basic and clinical re-
search. The number of publications using microarrays
(MAs) has been growing exponentially over the past four
to five years (1,2). In the 1990s, MAT was considered to be
one of the most promising new tools for the science of the
21st century, when fast, high-throughput technologies
would be used to grasp the complexity of biological sys-
tems (3–5). Since MAT is potentially capable of looking at
all of the cellular processes at the mRNA level at a given
moment, it was expected to deliver not only a compre-
hensive quantity of data about the transcriptional level,
but also to shed light on novel processes, pathways, and
molecular interactions in the living cell. MAT data, pro-
viding “freeze-frame” views of the transcriptome, could
help us understand the role and weight of known, and yet

to be discovered, molecular mechanisms in the “big pic-
ture” (6–8).

In clinical research, MAT is expected to help us better
understand the molecular basis of diseases, and the differ-
ence between healthy and diseased cells, tissues, and
organs, giving us clues about potential treatment (9–11).
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At the same time, microarrays (MAs) can be used to
monitor the effects of these treatments, especially of new
(and old) drugs (12–14). The unique view that MAT offers
of the cells and tissues also generated high hopes in the
field of pathology. It was expected to revolutionize and
automate the analysis of tissue sections and the classifica-
tion of diseases, disease subtypes, and disease stages.
Surprisingly, the latter areas (especially the analysis and
classification of different types, subtypes, and stages of
tumors) are the ones in which MAT has proven to be
immediately useful, delivering very promising and con-
vincing results (15–17).

However, in basic research, initial MA studies often
caused disappointment, failing to generate or confirm
new hypotheses. On many occasions, MAT has generated
more confusion than comprehension, and more questions
than answers (14,18,19). Despite this fact, MAT has im-
proved greatly in recent years. Most of the early problems
(e.g., reproducibility, sensitivity, high background, stan-
dardization, preparation of samples, data analysis) have
been addressed, and greatly improved; however, MAT still
has problems breaking out of a relatively narrow field of
applicability. One of the main sources of the remaining
problems is that while MA analysis requires 0.5–5.0 mil-
lion cells per sample, biological systems (tissues, organs)
with this amount of cells are almost always mixtures of
several different cell types (20)—all of which may behave
differently in a given experiment. The two main excep-
tions are cell lines and tumors, in which one can have
more than enough cells of the same type for MA analysis.
Not surprisingly, these two are the main fields of success-
ful MA studies (21–23). However, tumors only represent a
narrow segment of pathological processes in humans, and
immortalized cell lines have been repeatedly shown to
differ significantly from in vivo cells, even the ones from
which they originated (24,25). In many other MA studies
of unsorted cells, success could be achieved because most
of the cells in the sample behaved similarly, thus their
reaction to experimental condition changes could be de-
tected (26–28). One would suspect, though, that even in
these cases, many subtle effects might have remained
undetected, overshadowed by the nonreacting cells. Even
major changes in gene expression levels of a minor cell
subset of the mixture might have been lost in the back-
ground of the more numerous unchanged cells.

The obvious solution to the problem of cell mixtures
showing mixed gene expression profiles (GEPs) is cell
sorting. Delivering sorted, more homogenous cell samples
to MAs is expected to produce much clearer results than
studying cell mixtures. Several recent studies have taken
this approach and many of them have shown promising
results (29–31). However, it is still not well understood
how different cell sorting methods and sample handling
protocols affect the GEP (18,32,33). It is also not well
known how much effect different cell types have on each
other’s GEPs when they are mixed together. On the other
hand, in the real world of both basic and clinical applica-
tions, 100% purity of a given cell type is not always

achievable or feasible. So the question is, how pure is pure
enough?

To address these very basic questions, we studied the
overall GEP of defined cell mixtures to model heteroge-
neous biological samples. For the “overall GEP,” we used
the unprocessed microarray readout of the cell sample
with no values excluded. We evaluated the effects of cell
labeling, fixation, and sorting on the overall GEP. We also
analyzed how well we could recover the GEP of a pure
cell type by sorting these cells from a mixture. Since
different types of microarrays do not necessarily produce
the same data (7,34,35), we used both spotted (Clontech,
Palo Alto, CA) and short-oligonucleotide arrays (Af-
fymetrix, Santa Clara, CA) to compare the results of the
same experiments on these different platforms.

Microarray data analysis is not an obvious exercise; in
fact it has developed into its own new field, with quite a
few competing methods. The complexity of these meth-
ods often creates a communicational gap between the
data-producing biologists and the data-analyzing mathema-
ticians and biostatisticians (7,8,36). To avoid this gap, and
to keep the presentation of our results as directly con-
nected to the samples they represent as possible, we have
deliberately used very simple, straightforward methods to
compare the overall GEP of different samples, rather than
any of the more sophisticated software packages existing
today.

This article demonstrates why “cytomics” approaches,
as discussed by Valet et al. (37) are important. Without the
ability to analyze and purify cell subpopulations using
cytomics technologies, much of the power of MAT is
compromised or even lost.

MATERIALS AND METHODS
Cell Cultures

CEM. A human, CD4� T-cell line (acute lymphoblas-
toid leukemia, ALL); obtained through the AIDS Research
and Reference Reagent Program, Division of AIDS, NIAID,
NIH: CEM-T4 from Dr. J.P. Jacobs. CEM cells were cul-
tured using RPMI 1640 medium with 2 mM L-glutamine
and 10% fetal bovine serum in the presence of 5% CO2 at
37°C.

A2780. A human, CD4- epithelial cell line (human ovar-
ian carcinoma, ECECC 93112519); kindly provided by Dr.
Istvan Boldogh (Department of Microbiology and Immu-
nology, University of Texas Medical Branch, Galveston,
Texas). A2780 cells were cultured using RPMI 1640 me-
dium with 2 mM L-glutamine and 10% fetal bovine serum
in the presence of 5% CO2 at 37°C.

KG-1a. A human, CD34� stem-cell cell line (human
bone marrow acute myelogenous leukemia, ATCC CCL-
246.1); kindly provided by Dr. Brian R. Davis (Sealy Center
for Molecular Hematology and Oncology, University of
Texas Medical Branch, Galveston, Texas). KG-1a cells
were cultured using Iscove’s modified Dulbecco’s me-
dium with 4 mM L-glutamine and 20% fetal bovine serum
in the presence of 5% CO2 at 37°C.

Cell culture medium, serum, and glutamine were pur-
chased from Gibco BRL (Grand Island, NY).
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Model Cell Mixtures

Cultured CEM and A2780 cells were counted and tested
for viability. Calculated volumes for 3.0 � 107 cells each
were pelleted and resuspended in PBS (Gibco BRL, Grand
Island, NY). Both cell suspensions were recounted and
appropriate volumes of each cell type for each planned
mixture were calculated. The cell mixtures were then
prepared by mixing the calculated volumes of each cell
suspension.

Cord Blood Cells

Human cord blood was obtained under informed con-
sent from HIV-negative normal donors under IRB-ap-
proved protocols at the Department of Obstetrics and
Gynecology, Maternal-Fetal Medicine, University of Texas
Medical Branch, Galveston, Texas. Cord blood was drawn
into yellow-capped vacutainer tubes (Beckman Coulter,
Inc. Fullerton, CA), containing acid citrate dextrose (ACD)
anticoagulant. Two to four blood samples were pooled
and cord blood mononuclear cells (CBMCs) were isolated
using Ficoll-Paque density gradient (Pharmacia Biotech,
Piscataway, NJ) following manufacturer recommended
protocols. CD34� stem/progenitor cells were purified
from CBMCs by magnetic sorting using MACS CD34 Pro-
genitor Cell Isolation Kit (Miltenyi Biotec, Bergisch Glad-
bach, Germany) following the manufacturer’s recommen-
dations.

Magnetic Cell Sorting

CD34� KG-1a cells and CD34� cord blood stem/pro-
genitor cells were purified from CBMCs with MACS CD34
Progenitor Cell Isolation Kit (Miltenyi Biotec, Bergisch
Gladbach, Germany) following manufacturer’s recom-
mendations. CD4� CEM cells were purified from model
cell mixtures with MACS CD4 Microbeads (Miltenyi Bio-
tec, Bergisch Gladbach, Germany) following manufactur-
er’s recommendations.

After three consecutive rounds of column purification,
the purity (typically around 95–99%) of eluded cells was
analyzed by subsequent flow-cytometric analysis of an
aliquot labeled with anti-CD34-PE (for CD34� cord blood
cells and KG-1a cells) or anti-CD4-PE (for CD4� CEM
cells) antibodies (Caltag Laboratories, Burlingame, CA).

Flow Cytometry Analysis and Cell Sorting

CD34� cord blood cells and KG-1a cells were labeled
with phycoerythrin (PE)-conjugated, murine, anti-CD34
antibody (Caltag Laboratories. Burlingame, CA) using fac-
tory recommended protocols. CEM cells and CEM/A2780
cell mixtures were similarly labeled with PE-conjugated,
murine, anti-CD4 antibody (Caltag Laboratories. Burlin-
game, CA). Cells were analyzed and sorted on our custom-
built High Resolution Cell Sorter (HiReCS) system (38) set
up for standard fluorescence analysis. A tunable argon-ion
laser tuned to a 488-nm wavelength was used in all anal-
yses, with optical filters that were optimal for PE excita-
tion and emission. Samples were acquired on three pa-
rameters: PE, FSC, and SSC and stored as listmode data in

flow cytometry standard (FCS 2.0) file format for subse-
quent analysis. The program WinList 5.0™ (Verity Soft-
ware House, Topsham, ME) was used for flow-cytometric
data analysis.

A CEM/A2780 cell mixture containing 10% CEM cells
was presorted by one round of magnetic sort using MACS
CD4 Microbeads (Miltenyi Biotec, Bergisch Gladbach, Ger-
many), as described above. The resulting CEM-enriched
cell mixture was labeled with PE-conjugated, murine, anti-
CD4 antibody (Caltag Laboratories, Burlingame, CA) and
flow-sorted for PE-positive cells. This sort enhanced CEM
purity from 70 to 95% as shown by subsequent flow-
cytometric analysis of an aliquot. The resulting 95% pure
sample was analyzed by Affymetrix microarray analysis as
purified CEM cells.

Cell Fixation

Fluorescent antibody-labeled cells were washed once in
PBS (Gibco BRL, Grand Island, NY) and resuspended in
100–200 �l PBS. The sample was mixed with 500–1,000
�l (5� the volume of PBS), –20°C-cold methanol (Sigma,
St. Louis, MO) and incubated at –20°C for 5 min in the
dark. Cells then were pelleted and resuspended in PBS for
further processing.

Preparation of Labeled Probes and
Microarray Analysis

Total RNA was isolated from all cell samples using
RNAqueous™-4PCR RNA isolation kit (Ambion, Austin,
TX), following manufacturer’s recommendations. Within
each experiment, each sample was normalized by the
amount of isolated RNA. For spotted microarray analysis
of 82 genes, an Atlas™ Array Trial Kit (Clontech, Palo
Alto, CA) was used, following factory recommended pro-
tocols. For signal detection, a Storm 860 phosphorimager
(Molecular Dynamics, Sunnyvale, CA) was used. The array
images created were analyzed by Scanalyze software (Stan-
ford University, Stanford, CA) to quantitate microarray
data and produce the raw data files. For short-oligonucle-
otide microarray analysis of over 12,000 genes, a Gene-
Chip� Human Genome U95Av2 (Affymetrix, Santa Clara,
CA) was used. RNA labeling, hybridization, and scanning
to produce the raw microarray data files were done by the
Molecular Genomics Core Facility of the University of
Texas Medical Branch at Galveston, following factory rec-
ommended protocols.

Microarray Data Analysis

Images of Affymetrix arrays were generated directly
from the raw image files. The original array images were
viewed, magnified, pseudocolored, and cropped using the
Affymetrix Microarray Suite 5.0 software (Affymetrix,
Santa Clara, CA). For array-to-array image comparison, the
same segment of the Affymetrix array was always selected,
inspected, and compared. Images of Clontech arrays, gen-
erated by the Storm 860 phosphorimager (Molecular Dy-
namics, Sunnyvale, CA) were directly used for visual array-
to-array image comparison. Bar graphs, scatterplots, and
regression analysis results were generated from the raw
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data files using Microsoft Excel 2000 software (Microsoft,
Redmond, WA). Trellis plots were generated using S-Plus
6.2 software (Insightful Corp., Seattle, WA). Hierarchical
clustering was generated using Spotfire 7.2 data analysis
software (Spotfire Inc., Cambridge, MA). For generating
the heat map, raw Affymetrix data files of samples PS301–
PS304 were trimmed by excluding the 2% of all genes
with the highest readings and the 2% with the lowest
intensity readings. The array data from the four samples
were normalized by trimmed mean overall expression
level. Genes that were excluded were: 1) those that were
called “absent” in all four arrays by the Affymetrix soft-
ware; and 2) all genes with less than two-fold expression
level difference in all the possible pairwise comparisons
among the four arrays. The remaining 4,848 genes were
organized into a heat map by hierarchical clustering,
based on gene expression levels.

RESULTS
Microarray Images of Cell Mixtures

We selected two cell lines (CEM and A2780) with char-
acteristic similarities and differences in their GEPs, to be
able to monitor their contributions to the overall GEP of
each sample. First, we looked at the direct microarray
images of the samples to gain an overall impression of the
situation. Figure 1A shows the Affymetrix microarray im-

ages of each cell type. Throughout this study, we always
inspected the same selected segment of the Affymetrix
array for each sample, to visually confirm our findings.
The original array images were magnified, pseudocolored,
and cropped using the Affymetrix Microarray Suite soft-
ware. Each small square (feature) represents a gene se-
quence with millions of identical 25-mer oligonucleotides
attached to the array surface. The segment we used for
visual analysis contained a total of 165 features. Different
colors represent different, increasing, expression levels, in
the following order: black, violet, blue, green, yellow,
orange, red, and white. The two images in Figure 1A
exhibit very similar patterns (both samples being human
cell lines), but several differences can be found between
them. Some sequences are only expressed in one or the
other (circles 1 and 2), and some are expressed in both,
but at different levels (square 3). Triplicate arrays of the
same sample showed virtually identical images (not
shown).

Figure 1B displays the spotted microarray images of the
same two cell lines (CEM and A2780). Each pair of spots
represents a gene sequence, 96 sequences in all on each
spotted array. Larger and darker spots represent higher
gene expression levels. Again, within the very similar gene
expression patterns, there are several characteristic differ-
ences, with some genes expressed only in one of the cell

FIG. 1. Microarray images of cell mixtures. Genes expressed in only one of the cell types are in circles 1, 2, and 4. Differentially-expressed genes are in
square 3. A: Pure CEM and A2780 cells. Cropped segments of Affymetrix images. B: Pure CEM and A2780 cells. Spotted array images. C: Corresponding
Affymetrix and spotted array images of cell mixtures with different CEM/A2780 cell ratios.
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lines (circles 1, 2, and 4), and others showing differential
gene expression (square 3). Spotted array images of rep-
licate samples were virtually identical (not shown). These
observations confirmed that the GEPs of the two chosen
cell lines are indeed different for many selected genes, and
the differences between those selected gene expression
levels can be visually detected in the images of both array
types.

From these two cell lines, we prepared a set of cell
mixtures with gradually changing cell ratios. As Figure 1C
shows, PS1 contained pure CEM cells. The CEM/A2780
ratio in PS2 was 90:10, and it was 75:25 in PS3, 50:50 in
PS4, 25:75 in PS5, and 10:90 in PS6. PS7 had only A2780
cells. These gradual changes in the mixture ratio could be
detected as gradually appearing/disappearing (circles 1, 2,
and 4), or strengthening/weakening (square 3) genes in
both the consecutive Affymetrix images and the spotted
array images. These observations suggested that the GEP
of a cell mixture quite accurately mirrors the ratios of the
participating cell populations.

Scatterplot Analysis

After the “intuitive approach” described above, in
which we visually inspected expression levels of a few
single genes throughout all samples, we examined the
“overall GEP” of the same samples. For a comprehensive
overall comparison of two GEPs, we used simple scatter-
plots, in which each sample’s GEP was represented on
one axis, and each gene (small squares) was positioned
using its expression levels in the two samples as coordi-
nates. The two samples’ GEPs were considered to be more
similar when the genes lined up closer along a linear trend
line (multiple linear regression analysis). To calculate this
GEP similarity for each scatterplot, we used, as is com-
monly done, the R2-value (multiple correlation coeffi-
cient) as a measure of “goodness-of-fit.” A higher R2-value
was considered to indicate higher similarity between two
GEPs. Figure 2A shows pairwise scatterplots of triplicate
samples (pure A2780 cells). GEPs were produced by Af-
fymetrix arrays. As expected, triplicate GEPs of over
12,000 genes demonstrated high similarity. Repeated trip-
licate experiments consistently produced R2-values of
0.97–0.995. Replicate spotted array results were similar
(not shown). Based on these results, we considered sam-
ples with R2-values over 0.97 identical.

After establishing the approximate range of experimen-
tal error, we examined the overall GEPs of our model cell
mixtures. Figure 2B compares samples PS1 and PS2, a
pure CEM sample to a 90% pure one. With an R2-value of
0.9842, the overall GEPs of these two samples seemed to
be just as identical as if they were the same sample.
Similarly, the R2-value for comparing pure A2780 cells to
90% pure ones (PS7 versus PS6) was found to be 0.9826
(not shown). Obviously, this does not mean that the
expression levels of each individual gene in these samples
were practically the same, but it does suggest that for the
vast majority of genes a 90% pure sample could be used as
a “pure sample” in terms of an “overall” GEP.

Comparing the pure CEM sample to the pure A2780
sample (Fig. 2C) produces a scatterplot with an R2-value of
0.7532. Although we selected the two model cell lines to
be very different (CEM is a human T-lymphoblastoid cell
line while A2780 cells are derived from human ovarian
carcinoma cells), both are human tumor cells with signif-
icant similarities in their GEPs. In our model, this R2-value
of 0.7532 is “as bad as it gets.” This value probably corre-
sponds to the degree of similarity one sees with very
different human cell types, due to the necessary expres-
sion of housekeeping and fundamental genes needed for
routine growth and survival.

Figure 2D shows all possible pairwise scatterplots of the
seven samples in a Trellis plot format. Each scatterplot is
positioned in the row and column of the two samples
from which it was made (e.g., the second scatterplot in
the fourth column compares samples PS2 and PS4). By
following along a given row or column, it is visually easy
to see the effect of the purity of cell mixtures on GEPs.
The overall pattern was strikingly similar to the one ob-
served in Figure 1C. When the R2-values of all these
scatterplots were calculated (data not shown), we found
that they also followed the same tendency; the farther two
samples were from each other in the Trellis plot, the
lower R2-value they produced when compared. Interest-
ingly, the 75% mix compared to the pure sample (PS3
versus PS1 and PS5 versus PS7) produced R2-values in the
0.96–0.975 range, which was established earlier as the
estimated borderline for this method to be able to “tell the
difference” between two samples. However, a very small
number of genes was found to fall farther away from the
regression line. These outlier genes showed significantly
different expression levels within the otherwise almost
identical samples. All scatterplots in which the cell ratios
of the two samples compared were more than 25% differ-
ent had a much lower R2-value. These results suggest that
a sample needs to be over 75% pure to truly represent the
GEP of the given cell population.

Modeling Genes in “Real” Samples

After assessing the overall GEPs of cell mixtures, we
modeled a possible “worst case scenario in real biological
samples,” in which the background cells would strongly
express the investigated genes. We selected a set of indi-
vidual genes that were moderately expressed in CEM cells
(target cells) and strongly expressed in A2780 cells (back-
ground cells). As shown in Figure 2E, the expression level
of these genes followed the ratio of A2780 cells in the
mixtures. Although CEM cells also expressed these genes,
their effect on the sum of the expression levels was totally
washed out by the background cells. To monitor changes
in the expression levels of these genes in CEM cells, even
a 90% pure sample is not pure enough.

A possible “best case scenario” was modeled in Figure
2F. Again, the selected genes were moderately expressed
in CEM cells, but A2780 cells did not express these genes
at all. Now it was possible to monitor the expression
levels of these genes in the target cells, even in the
presence of nine times more background cells. The charts
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in Figures 2E–F demonstrate Affymetrix data; very similar
charts could be created from spotted array results (not
shown).

Effects of Sample Handling

The results displayed in Figures 1 and 2 confirmed the
notion that, in order to investigate the GEP of a cell subset

in a mixture, these cells need to be purified first. The next
question was, how much distortion would the purification
process itself (including cell fixation, labeling, and sort-
ing) introduce into the studied GEP? We tested methanol-
fixation, since alcohols are known to preserve nucleic
acids better than cross-linking agents (39). Figure 3A
shows a GEP scatterplot of live, unlabeled CEM cells and

FIG. 2. Gene expression profile comparisons of cell mixtures and pure samples. A: Pairwise scatterplot analysis of triplicate A2780 samples. B: Scatterplot
analysis comparing pure CEM cells and a 90% mixture of CEM/A2780 cells. C: Scatterplot analysis comparing pure CEM and pure A2780 cells. D: Trellis
plot of all pairwise scatterplots, comparing samples PS1–PS7. Each scatterplot is positioned in the row and column of the two samples from which it is
made. E: Expression levels of genes that are moderately expressed in CEM cells and strongly expressed in A2780 cells. F: Expression levels of genes that
are moderately expressed in CEM cells and not expressed in A2780 cells.
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antibody-labeled, methanol-postfixed CEM cells. With an
R2-value of 0.982, we considered the overall GEP of the
fixed and labeled sample unaltered.

Figure 3B is a Trellis plot of CEM cell samples that were
all handled somewhat differently prior to microarray anal-

ysis. Two steps in the RNA isolation protocol, DNase
digestion and purification of the isolated RNA by ethanol-
precipitation, are generally thought to be important to
generate good quality RNA. We omitted these steps in
handling two samples, to test their importance. The ef-

FIG. 3. Effects of sample processing on the gene expression profile. A: Scatterplot comparing the GEPs of live CEM cells and antibody labeled,
methanol-fixed CEM cells. B: Trellis plot of all pairwise scatterplots, comparing samples PS1, and PS8–PS12. Each scatterplot is positioned in the row and
column of the two samples from which it is made. C: Flow cytometry scattergrams comparing live (labeled and unlabeled) CEM cells to methanol fixed
ones.
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fects of methanol fixation and antibody labeling—sepa-
rately and combined—were also tested. None of the scat-
terplots presented here had an R2-value lower than 0.975
(not shown), and were practically identical. Similarly to
Figure 2D, a very small number of outlier genes showed
significantly different expression levels within the other-
wise almost identical samples.

While the GEP might not be altered significantly by
methanol fixation, we were concerned that this fixation
might alter the cell subset separation process. However,
as shown by the flow cytometric results of Figure 3C, the
fluorescent intensity of CEM cells labeled with anti-CD4,
R-phycoerythrin-conjugated (PE) antibody after methanol
fixation was found to be comparable to that of live, la-
beled cells. Similar results were obtained for fluorescein
isothiocyanate (FITC)-conjugated antibodies. Autofluores-
cence of methanol-fixed cells was actually somewhat
lower than that of live cells, allowing improved separation
of labeled and unlabeled cells after fixation.

Recovering Gene Expression Profiles by Sorting

The next questions we addressed were: was it possible
to recover the pure GEP of a cell subset after sorting these
cells out of a mixture, and how close would the recovered
profile be to the original, especially when the target cells
were only a minor cell population in a mixture? Figure 4A
displays the flow cytometry scattergrams of pure CEM
cells, pure A2780 cells, their 1:10 mixture, and the CEM
cells sorted from this mixture after anti-CD4-PE labeling.
We tested the effects of both Miltenyi magnetic bead–
based cell sorting and flow cytometry/cell sorting on the
recovered GEP.

All four samples were analyzed by both spotted microar-
ray technology (Fig. 4B) and short-oligonucleotide arrays
(images not shown). On the spotted array images, we
observed that the GEP of the mixture looked very similar
to that of the A2780 cells, and the characteristics of the
CEM cells seemed to be lost in it. The CEM cells separated
from this mixture exhibited the lost characteristics, again
very much resembling the original, pure CEM sample.

Figures 4C and D display GEP scatterplots comparing
these four samples after both spotted array (Fig. 4C) and
short-oligonucleotide array (Fig. 4D) analysis. The gener-
ated scatterplots and their R2-values were found to be very
similar between the two methods. As shown earlier, the
GEPs of CEM and A2780 cells are indeed different, with
R2-values of 0.808 (Clontech array) and 0.815 (Affymetrix
array). The CEM profile is lost in the mix, with R2-values of
0.802 (Clontech array) and 0.841 (Affymetrix array). After
separating these CEM cells from the mixture, the recov-
ered GEP of the sorted CEM cells was found to be virtually
identical to the original (pure CEM cells) profile, with
R2-values of 0.990 (Clontech array) and 0.984 (Affymetrix
array). For the Clontech array analysis, CEM cells were
purified by magnetic bead sorting (Miltenyi Biotec), and
for the Affymetrix array analysis, a combination of mag-
netic bead sorting and flow cytometry/cell sorting was
used.

Profiling CD34� Stem/Progenitor Cells

After validating each step of cell purification for mi-
croarray analysis, we tested the method on a “real” bio-
logical sample, which was one of our original motivating
applications for developing this technology. CD34�
stem/progenitor cells were isolated from cord blood using
anti-CD34 antibody–coated Miltenyi magnetic beads.
KG-1a cells are a 100% CD34� cell line, usually used for
modeling stem/progenitor cells. In this experiment, they
served as a control for monitoring possible GEP distor-
tions caused by cell purification. Figure 5A displays the
flow cytometric scattergrams of the four samples after
anti-CD4-PE labeling. Sample PS301 contained a mixture
of all mononuclear cells isolated from cord blood by the
Ficoll-Paque method. Sample PS302 contained CD34�
stem/progenitor cells purified from sample PS301. PS303
contained unpurified KG-1a cells, and PS304 was purified
from PS303 using the same method that was used to sort
PS302 (an internal control for the effects of cell handling).
Flow cytometry data of samples PS303 and PS304 looked
very similar, confirming that all KG-1a cells were CD34�
and were sorted. CD34� stem/progenitor cells constitute
less than 1% of all CBMCs (40,41). As expected, in our
experiments, CD34� cells from human cord blood sam-
ples showed up only as a very small subset on the PS301
flow cytometry scattergram. Flow cytometry data of
PS302 confirmed their successful isolation.

All four samples were analyzed by Affymetrix microar-
rays. Figure 5B shows the array images of the samples after
selecting the same portion of the full image, as in earlier
experiments. The images of PS303 and PS304 were virtu-
ally identical, suggesting that the sort process did not
introduce much distortion into the GEPs (at least not into
the genes present in this image segment). Some genes
expressed by purified CD34� cord blood cells were sim-
ilarly expressed in CBMCs and were not expressed in
KG-1a cells (Fig. 5B, arrow 1). Expression levels of other
genes were different in CD34� purified cord blood cells
than in any of the other three samples (Fig. 5B, arrow 2).
These genes might be characteristic to stem/progenitor
blood cells.

The scatterplots shown in Figure 5C also confirm that
the sort process did not introduce any distortion into the
overall GEPs, since the sorted and unsorted KG-1a cells
were truly identical (R2 � 0.99). With an R2-value of 0.83,
the overall GEP of purified CD34� stem/progenitor cells
was very different from the GEP of unsorted CBMCs.
Surprisingly, the CD34� stem/progenitor cells isolated
from human cord blood were also very different from the
KG-1a cells (R2 � 0.81), despite the fact that these cells
are generally used as a model stem/progenitor cell line in
experiments. While KG-1a cells, originally derived from a
bone marrow tumor, also express CD34 protein, the rest
of their gene expression profile is dramatically different
from those of a normal CD34� stem/progenitor cell iso-
lated from normal human cord blood.

Figure 5D is a software-generated (Spotfire, version 7.2)
heat map comparing, by hierarchical clustering, the ex-
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pression levels of all of the genes judged to be “valid”
(approximately 4,800 genes) for the four samples. Each
gene is represented by a colored stripe, in which light
green represents very low expression levels, and light red
represents very high expression levels. The genes are
arranged into clusters (both by gene expression levels in
the vertical axis) and by cell sample (in the horizontal
axis), by hierarchical clustering, to visualize characteristic
groups of genes as patterns. Again, CD34� stem/progen-
itor cells are truly different from both KG-1a cells and
from CBMCs, although some groups of genes were ex-

pressed similarly. Hierarchical clustering analysis found
that the GEP of CD34� stem/progenitor cells isolated
from cord blood was still slightly closer to the GEP of the
KG-1a cells than to the mature blood cells in their original
cord blood mixture. Prior purification of these CD34�
cells from cord blood was necessary to uncover their
characteristic profile.

DISCUSSION
In this project, we set out to examine both the capabil-

ities and limitations of the microarray approach in study-

FIG. 4. Recovered gene expression profiles after cell sorting. A: Flow cytometry scattergrams of pure CEM and A2780 cells, a 10% CEM/A2780 cell
mixture, and purified CEM cells recovered from the 10% mixture. B: Spotted microarray images of the same four samples. Genes expressed in only one
of the cell types are in circles 1 and 2. Differentially expressed genes are in square 3. C–D: Scatterplots comparing CEM cells to A2780 cells, the 10%
CEM/A2780 cell mixture, and to the recovered CEM cells based on spotted microarray results (C) and Affymetrix results (D).
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ing gene expression in real biological samples and de-
fined, model cell mixtures. To determine if meaningful
data could be obtained by this method, even in the unfor-
tunate scenario when the investigated cell type was a
small minority in the sample, we tested the effects of
cell-subset ratios and sample processing methods on the
overall GEP, as well as on individual gene expression
levels. We modeled biological samples by cell mixtures of
two cell types, with different ratios of each type, and
analyzed their GEP by both spotted (Clontech) and short-
oligonucleotide microarrays (Affymetrix).

We found that without applying any cell separation, the
cell type in the majority dominated the overall GEP, while
the GEPs of minor cell subsets were washed out. Looking
at the overall GEP when investigating a minor cell subset
of a cell mixture is like “only seeing the tip of the iceberg.”
The differences between the GEPs of the gradually chang-
ing cell mixtures convincingly mirrored the changes in
cell ratios. Summarizing our model cell mixture experi-
ments, we concluded that the gene expression profiles for
mixed cell populations are, as expected, the combined
expression profiles for each cell subpopulation, weighted
according to its relative frequency in the cell mixture.

When trying to determine the sensitivity of the MA
approach in analyzing cell mixtures, we found that, in our

model, the overall GEP of a more than 75% pure sample
(PS2 and PS3) was indistinguishable from a 100% pure
sample (PS1). The number of outlier genes within these
samples as seen in the Trellis plots was very small (fewer
than 10 out of more than 12,000 genes), considering that
the raw data was not preprocessed prior to scatterplot
analysis. However, these outlier genes might indicate that
purity requirements can be very different for monitoring
individual genes, depending on whether those same genes
are expressed at high or low levels in the contaminating
cell types.

Our results indicated that, in the case of minor cell
subsets, to be able to see more than just the tip of the
iceberg, cell purification is necessary. Any purification
method takes time, and mRNA is a “moving target,” with
possible degradation during the experiment. RNAs can be
produced very rapidly and some mRNAs may be degraded
in a matter of minutes in live cells, while others may be
stable over several hours (32,42). Is it possible to “freeze
the GEP in time” by cell fixation until the cells get purified
and delivered to the microarray? Most purification meth-
ods require labeling of the target cells. How much will the
labeling process alter the GEP of the labeled cells? To
address these questions, along with the reasonable con-
cern that the more a sample is processed the more dis-

FIG. 5. Microarray analysis of purified CD34� cord blood stem/progenitor cells. A: Flow cytometry scattergrams of CBMCs, MACS-purified CD34� cord
blood stem/progenitor cells, unsorted KG-1a cells, and MACS-sorted KG-1a cells. B: Affymetrix microarray images of the same four samples. Arrow 1 is
pointing at a sequence expressed only in the first two samples. Arrow 2 is pointing at a sequence expressed only in CD34� cord blood stem/progenitor
cells. D: Heat map of the same four samples. Samples and genes are ordered by Spotfire hierarchical clustering analysis based on normalized expression
levels. Some groups of genes (a, b, and c) are differentially expressed in CD34� cord blood stem/progenitor cells.
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torted its GEP might get, we also tested handling effects
on overall sample GEP. We showed that after antibody
labeling and methanol fixation the overall GEP remained
unaltered, and even omitting steps traditionally used to
improve RNA quality did not have a significant effect on
the overall GEP. Again, the presence of a few outlier genes
indicated that individual genes might be much more af-
fected by certain processing steps; obviously, antibody
labeling of a surface receptor on a live cell might trigger
certain pathways altering the expression levels of the
genes involved. Nevertheless, we were able to conclude
that the overall GEP of a sample (representing the vast
majority of all genes) is more robust and resistant to
sample processing than has been generally appreciated.

Methanol fixation of the antibody-labeled cells prior to
cell purification and MA analysis turned out to be a rather
fortunate choice. It did not unfavorably alter the detec-
tion/selection process by either immunomagnetic cell
separation or flow cytometric cell sorting. Both PE- and
FITC-labeled antibodies used in these experiments main-
tained good separation characteristics after methanol post-
fixation. In summary, this fixation method not only pre-
served the GEP of labeled cells, but also allowed
fluorescence-based labeling for cell sorting.

To address the question of how much purity we need in
a sample, we showed that generally it is not necessary to
achieve 100% purity. In our model for the overall GEP,
anything above 75% pure was found to be indistinguish-
able from the pure sample. This level of purity can be
achieved by two rounds of magnetic bead sorting. One
round typically results in about 70% purity; two rounds
raises the purity to approximately 90%; while after three
rounds, it is generally above 95%. One round of magnetic
bead sorting followed by one round of flow cytometry/
cell sorting results in about 90–98% purity as well. Study-
ing individual genes, however, might require much higher
or lower sample purity, depending on the gene’s relative
expression levels in the cell subsets. With good cell bi-
omarkers and techniques, multiparameter flow cytom-
etry/cell sorting can be used to obtain purities of more
than 99%. This degree of purity may be needed for correct
GEP analysis of low-expressing genes in which even 90%
purity may be insufficient to obtain accurate GEP results
for those specific genes.

To test just how much of the “iceberg” can be revealed,
we purified the minority cell subset of a 10% cell mix in
which the GEP of the minor cell subset was shown to be
covered by the background cells. Using both magnetic
bead cell purification and flow cytometry/cell sorting, we
managed to recover the “hidden” GEP virtually perfectly,
also proving that the sort process itself did not distort the
profile. The almost perfectly recovered profiles suggest
that both magnetic bead and conventional flow cytom-
etry/cell sorting purification methods are capable of puri-
fying cells without significantly distorting their GEP. Re-
sults from the control KG-1a cells from the cord blood
experiment confirmed this finding, since the cells that
went through the sort process matched the unsorted cells,
with an R2-value of 0.99. We concluded that for meaning-

ful gene expression microarray profiling a minor cell sub-
set of a cell mixture, purification of these cells is not only
necessary, but also very much achievable, recovering the
“pure profile” without any significant distortion, despite
the concerns expressed previously in the literature
(18,33,39). In our hands, following the procedures de-
scribed in this work, the effects of sample handling on the
GEP were minimal and not significant.

As a proof-of-principle experiment, we measured the
GEP of purified, CD34� cord blood stem/progenitor cells.
Since these cells are present in cord blood at a less than
1% minority of all mononuclear cells (40,41), their GEP
had been heavily masked by the overwhelming presence
of mature, contaminating, cell types. The true stem/pro-
genitor cell-GEP was “invisible” without purification. We
showed that the recovered GEP of these cells was char-
acteristically different from both CBMCs and KG-1a cells.
This result seriously questions the use of KG-1a cells as a
model cell line for stem/progenitor cells in gene expres-
sion studies, even though that cell line was originally
established from a bone marrow tumor.

For the cord blood experiment, we needed to pool
several samples. Individual cord blood samples could not
be directly analyzed, simply because they did not provide
enough purified CD34� cells necessary for one microar-
ray analysis. This problem would be even more serious if
we wanted to further purify this cell subset based on the
cells’ other surface antigen properties. Unfortunately,
many biological samples do not provide enough purified
cells of a certain cell type for direct gene expression
profiling. For these samples, nondistorting RNA-amplifica-
tion is necessary prior to microarray analysis.

In summary, we found the results presented here very
promising. Both Clontech and Affymetrix arrays per-
formed at a very high level of reproducibility, the gener-
ated profiles proved to be surprisingly robust, and hidden
GEPs could be accurately recovered from cell mixtures by
cell separation techniques. MAT, based on specific cell
subpopulations, could truly become a driving technology
not only in genomics, but also in the emerging field of
cytomics, which aims at the understanding of the molec-
ular architecture and functionality of cell systems (cy-
tomes) by single-cell analysis in combination with exhaus-
tive bioinformatic knowledge extraction (37).
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