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We have developed a statistical regression modeling approach to discover genes that are differentially expressed
between two predefined sample groups in DNA microarray experiments. Our model is based on well-defined
assumptions, uses rigorous and well-characterized statistical measures, and accounts for the heterogeneity and
genomic complexity of the data. In contrast to cluster analysis, which attempts to define groups of genes and/or
samples that share common overall expression profiles, our modeling approach uses known sample group
membership to focus on expression profiles of individual genes in a sensitive and robust manner. Further, this
approach can be used to test statistical hypotheses about gene expression. To demonstrate this methodology, we
compared the expression profiles of 1l acute myeloid leukemia (AML) and 27 acute lymphoblastic leukemia
(ALL) samples from a previous study (Golub et al. 1999) and found 141 genes differentially expressed between
AML and ALL with a 1% significance at the genomic level. Using this modeling approach to compare different
sample groups within the AML samples, we identified a group of genes whose expression profiles correlated with
that of thrombopoietin and found that genes whose expression associated with AML treatment outcome lie in
recurrent chromosomal locations. Our results are compared with those obtained using t-tests or Wilcoxon rank

sum statistics.

The development of oligonucleotide microarray technologies
allows scientists to monitor the mRNA transcript levels of
thousands of genes in a single experiment. Indeed, several
groups have already begun to simultaneously examine the
expression profiles of entire genomes for organisms such as
yeast whose complete DNA sequences are known (Lashkari et
al. 1997; Chu et al. 1998; Spellman et al. 1998; Ferea et al.
1999). This power of examination and discovery moves well
beyond the traditional experimental approach of focusing on
one gene at a time. Nevertheless, the tremendous amount of
data that can be obtained from microarray studies presents a
challenge for data analysis (Brent 2000).

At present, the most commonly used computational ap-
proach for analyzing microarray data is cluster analysis. Clus-
ter analysis groups genes or samples into “clusters” based on
similar expression profiles and provides clues to the function
or regulation of genes or similarity of samples via shared clus-
ter membership (Tamayo et al. 1999; Tavazoie et al. 1999;
Gaasterland and Bekiranov 2000). Several clustering methods
have been usefully applied to analyzing genome-wide expres-
sion data and can be classified largely into three categories.
The tree-based approach uses distance measures between
genes such as correlation coefficients to group genes into a
hierarchical tree (Eisen et al. 1998). The second category clus-
ters genes so that within-cluster variation is minimized and
between-cluster variation is maximized (Tamayo et al. 1999;
Tavazoie et al. 1999). The third category groups genes into
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blocks, in which the correlation is maximized and between
which the correlation is minimized (Ben-Dor et al. 1999).

The power of cluster analysis for microarray studies lies
in discovering gene transcripts or samples that show similar
expression profiles. Examples include identification of tran-
scripts that appear to be coregulated over a time course (Chu
et al. 1998; Spellman et al. 1998), or uncovering previously
unknown sample groupings (Alon et al. 1999; Alizadeh et al.
2000). However, identification of “like” groups is not neces-
sarily the objective in a microarray study. For example, mi-
croarrays present a high-throughput method to discover
genes that are differentially expressed between predefined
sample groups, such as normal versus cancerous tissues (Alon
et al. 1999; Coller et al. 2000). Cluster analysis is not a sensi-
tive method for this type of study because it focuses on group
similarities, not differences within each individual gene. Fur-
thermore, clustering algorithms such as those listed above are
also unable to take advantage of preexisting knowledge of the
data, such as the sample groupings.

The technique that has been most commonly applied for
group comparisons from microarray studies is to simply look
for genes with a twofold or higher difference between the
mean intensities for each group (DeRisi et al. 1997). However,
relative mean comparisons fail to account for sample varia-
tion, may require ad hoc data manipulation (e.g., to avoid
divide-by-zero errors), and ignore the fact that differences in
expression level of <100% can exert meaningful biological
effects. Indeed, scientists would rarely use similar criteria
when focusing their analysis on a single gene, such as com-
paring a panel of Northern blots or enzymatic assays between
healthy and cancer tissue samples.

Classic statistical approaches used for detecting differ-
ences between two groups include the parametric t-test and
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the nonparametric Wilcoxon rank sum (Snedecor and Coch-
ran 1980). Recently, the t-test was used to compare expression
profiles in microarray experiments (Arfin et al. 2000; Tanaka
et al. 2000). One must bear in mind three important issues
when applying such standard statistical tests to microarray
data analysis. First, the t-test assumes normality and constant
variance for every gene across all samples. These assumptions
are certainly inappropriate for a subset of genes despite any
given transformation. Second, these tests cannot take advan-
tage of the genomic data when correcting for heterogeneity
between samples. Third, it is essential to correct for the high
false-positive rate resulting from multiple comparisons. Oth-
erwise, if a typical P-value of 0.05 were used to signify differ-
ential expression for individual genes between two groups,
one would expect to find 50 positives for every 1000 genes
under examination, even though none of these genes are dif-
ferentially expressed.

In this manuscript, we introduce a well-founded and ro-
bust statistical procedure that compares the expression pro-
files of individual genes between two sample groups while
taking into consideration the complexity of the genomic
data. This methodology makes no distributional assumptions
about the data and accounts for high false-positive error rate
resulting from multiple comparisons. To demonstrate the sta-
tistical modeling technique, we examined expression profiles
from 38 leukemia patients, 27 of whom were diagnosed with
acute lymphoblastic leukemia (ALL) and 11 of whom were
diagnosed with acute myeloid leukemia (AML) (Golub et al.
1999). Our results are compared with those obtained with the
t-test or Wilcoxon rank sum. The findings show that our sta-
tistical modeling approach provides a sensitive and robust
means to extract relevant information from DNA microarrays.

RESULTS
Methodology

The first step in our statistical analysis of oligonucleotide-
array expression profiles is preprocessing and/or transforma-
tion of the data. In the present work this includes removal of
the spiked oligonucleotide controls. The second step is to es-
timate correction factors for sample-specific heterogeneity, as
well as for chip-specific heterogeneity, and to use these factors
to normalize the data. The final step is to perform a regression
analysis to estimate the relevant model parameters (equation
1 in Methods) for each gene transcript using robust statistical
techniques. The results are ranked by the absolute value of the
Z-score for each transcript. The higher the Z-score, the greater
the confidence level that the corresponding gene is differen-
tially expressed between the two groups.

Our methodology is implemented in a software program.
Interested investigaors may contact L.P.Z. for details.

Multiple Comparisons

At issue when performing a large number of statistical tests is
the high occurrence rate of false positives resulting from the
multiple comparisons. To address this concern, we propose to
raise the statistical threshold for declaring a transcript differ-
entially expressed to ensure that the significance level is ap-
plicable on the genomic scale. A conservative choice to adjust
the significance is the Bonferroni’s correction, which divides
the desired significance, for example, 1% or P-value = 0.01, by
the total number of statistical tests performed. In this work,
we calculated the significance value (i.e., P-value) for each
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probe set using a modified Bonferroni’s correction as pro-
posed by Hochberg (Hochberg 1988) (see Methods for details).

Applying Bonferroni’s correction to data from Af-
fymetrix Hu6800 GeneChip oligonucleotide arrays, which
contain 7070 noncontrol probe sets for 6817 individual
genes, the adjusted significance level for each probe set is
0.01/7070. Assuming that the Z-score follows the normal dis-
tribution, the corresponding 1% significance threshold at the
genomic level is a Z-score of 4.8. Alternatively, one may adjust
the significance by the total number of genes rather than the
total number of probe sets. However, different probe sets for
the same gene may yield dissimilar results, and either level of
correction results in a rounded Z-score of 4.8 at the 1% sig-
nificance level.

Leukemia Study
A previous study examined mRNA expression profiles from 38
leukemia patients (27 ALL and 11 AML) to develop an expres-
sion-based classification method for acute leukemia (Golub et
al. 1999). Affymetrix Hu6800 GeneChips were used in the
study. The data set from this study was ideal for illustrating
our modeling technique as it contains a large number of pa-
tients and has been well characterized (Golub et al. 1999).
Furthermore, there is a great deal of literature concerning leu-
kemia from which we can assess the validity of our findings.
Our statistical modeling approach identified 141 probe
sets that were differentially expressed between AML and ALL
with a Z-score of 4.8 or higher. Twenty-four of these were
detected at higher levels in AML and the remainder were ex-
pressed preferentially in ALL. Tables 1 and 2 list the top 25
differentially expressed probe sets in either sample group.
These tables also include the corresponding P-values and or-
dering of the statistics given to each probe set by t-tests with
either equal or unequal variance, and by the Wilcoxon rank
sum. As expected, the ranked significance given to each gene
by any of the statistical tests did not appear to correlate with
either relative or absolute mean expression level differences.
Tables 1 and 2 show that parametric t-tests under equal vari-
ances yielded rather different test statistics and ordering than
our modeling approach. In contrast, the ordering of the probe
sets by t-tests performed assuming unequal variances was very
similar to that obtained in our regression analysis. Although
t-tests are efficient under the assumption of equal variances,
the results of this analysis appeared very sensitive to this as-
sumption. In cases of discrepancies between f-tests with un-
equal variances and Z-scores, the latter are considered to be
more robust because the assumptions of homogeneous vari-
ances within groups and normality made by the t-test may be
violated. Note that the differences of P-values between the
two statistics are associated with distributions; the t-
distribution with heavy tails gives more conservative values
than the asymptotic normal distribution we used to translate
Z-scores to P-values. The Wilcoxon rank sum failed to identify
any genes as differentially expressed at the 1% significance
level. These findings are not surprising because nonparamet-
ric statistics may be too robust to yield any significant results.
We next applied the statistical modeling method to ex-
amine expression profiles within subgroups of the 11 AML
patients. Thrombopoietin (TPO) is the major cytokine respon-
sible for the transition of myeloid progenitors into mega-
karyocytes (Caen et al. 1999), but also plays a more general
role in the differentiation of hematopoietic stem cells into all
types of progenitors (Kaushansky 1999). Furthermore, TPO is
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Table 1. Top 25 Genes More Highly Expressed in AML Than in ALL
Fold t ut w
Gene description Probe Difference  S.E.  Z-score P-value' diff> ttest® rank® ut-test® rank® W.r.s.” rank®
Fumarylacetoacetate M55150 978.04 101.41 9.64 <0.0001 2.21 <0.0001 1 <0.0001 1 0.0146 2
Neuromedin B M21551 216.62 33.81 6.41 <0.0001 1.94 0.1952 64 0.0025 2 0.0432 7
Leukotriene C4 synthase U50136  1551.78 25394 6.11 <0.0001 2.57 <0.0001 2 0.0082 4 0.0584 11
CDC25A Cell division M81933 178.74 2931 6.10 <0.0001 3.60 0.0510 38 0.0070 3 0.0678 14
cycle 25A
Thrombospondin 1 U12471 128.52 2194 586 <0.0001 1.83 0.0570 39 0.0145 5 0.3275 33
Zyxin X95735  2587.14 44532 5.81 <0.0001 7.98 <0.0001 3 0.0199 6 0.0124 1
LYN V-yes-1 Yamaguchi M16038 1337.77 231.45 5.78 <0.0001 4.49 <0.0001 4 0.0216 7 0.0503 10
sarcoma viral related
oncogene homolog
Interferon-gamma D49950 167.60 29.25 5.73 <0.0001 3.18 0.0004 7 0.0241 8 0.6428 50
inducing factor
(IGIF)
ATP6C Vacuolar H+ M62762 1686.88 300.07 5.62 0.0001 2.33 0.0024 13 0.0322 9 0.4925 43
ATPase proton
channel subunit
Metargidin U41767 481.47 86.18 5.59 0.0002 1.50 0.0049 19 0.0353 10 0.1220 16
Leptin receptor Y12670 859.65 154.73  5.56 0.0002 3.10 <0.0001 5 0.0414 12 0.0233 3
Ferritin, light M11147  7928.14 1428.69 5.55 0.0002 1.97 0.0799 44 0.0368 11 0.8361 55
polypeptide
HoxA9 U82759 602.71 110.33  5.46 0.0003 3.48 0.0017 12 0.0521 13 0.1409 18
NAB50 U63289 121.53 23.29 5.22 0.0013 n.a.  0.3464 79 0.0955 14 1.0000 >58
Calnexin D50310  1982.20 385.66 5.14 0.0019 1.47 0.6143 92 0.1184 15 1.0000 >58
PLCB2 Phospholipase M95678  1281.19 249.67 5.13 0.0020 1.97 0.0147 28 0.1347 16 0.4924 41
C, beta 2
Polyadenylate binding 748501  4474.14 879.99 5.08 0.0026 1.50 0.5856 90 0.1404 17 1.0000 >58
protein Il
GTP-binding protein us9877 398.95 79.87 5.00 0.0041 n.a 1.0000 >105 0.1772 18 1.0000 >58
(RAB31)
Chloride channel 730644 760.30 154.08 4.93 0.0056 1.69 0.2998 76 0.2253 19  1.0000 >58
(putative) 2163bp
Proteogylcan 1, X17042 5188.71 1060.82 4.89 0.0070 3.82 0.0129 27 0.2738 20 0.8359 53
secretory granule
PPlase, mitochondrial M80254 377.99 7741  4.88 0.0073 10.75 0.0015 10 0.2883 22 0.4925 42
CD33 M23197 579.93 119.10 4.87 0.0078 4.25 0.0002 6 0.3060 25 0.0503 9
Activated leucocyte 138608 119.96 2471  4.85 0.0084 2.51 0.0488 37 0.2984 23 1.0000 >58
cell adhesion molecule
FCGR2B Fc fragment of  X62573 257.44 53.18 4.84 0.0090 1.47 1.0000 >105 0.2835 21 1.0000 >58
19G, low affinity Ilb,
receptor for (CD32)
Interkeukin-8 Y00787  8645.98 1802.75 4.80 0.0112 9.63 0.0015 11 0.3032 24 0.2158 27

Dataset from Golub et al. (1999).

!P-value computed from Z-score using a modified Bonferroni’s correction.

2(n.a.) The mean of one of the groups < = zero.

3P-value obtained from t-test with equivalent variances using a modified Bonferroni’s correction.
“Relative ranking by significance values obtained from t-test with equivalent variances. >105 indicates that the gene was not ranked because

the P-value was 1.0.

*P-value obtained from t-test with unequal variances using a modified Bonferroni’s correction.

®Relative ranking by significance values obtained from t-test with unequal variances.

’P-value obtained from Wilcoxon rank sum using a modified Bonferroni’s correction.

8Relative ranking by Wilcoxon significance values. >58 indicates that the gene was not ranked because the P-value was 1.0.

known to be expressed in a number of AML cell lines (Graf et
al. 1996). We noticed a sharp delineation of TPO expression
profiles between patients 28, 30, 32, 34, 36, and 38 versus
patients 29, 31, 33, 35, and 37 and therefore compared these
patient groups using our statistical modeling technique. This
approach identified eight transcripts with a Z-score >4.8, with
TPO itself yielding the highest ranking (Table 3). In contrast,
neither f-tests nor Wilcoxon rank sum identified any gene
with a genomic significance level of 1% (Table 3). Of the 15
highest ranking mRNAs from our analysis, three of the corre-
sponding gene products are known to be influenced by or
interact directly with TPO, two have not been characterized

heavily but are highly homologous to proteins that interact
with TPO, and eight others are involved in myeloid hemato-
poiesis. Although we have no evidence for any biological sig-
nificance of the patient groups used in this comparison other
than TPO transcript level, we noted that the groupings appear
to fall along the lines of samples with high or low percentage
of blasts (see http://www.genome.wi.mit.edu/MPR). Interest-
ingly, TPO can stimulate the proliferation of AML blasts (Mo-
toji et al. 1996; Luo et al. 2000).

We next examined the association of gene expression
with the success or failure of treatment. Among the 11 AML
patients, 6 patients did not respond to treatment (patients
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Table 2. Top 25 Genes More Highly Expressed in ALL Than in AML

Fold t ut w
Gene description Probe Difference S.E. Z-score P-value' diff*> ttest® rank® ut-test® rank® W.r.s.” rank®
C-myb U22376 —3183.79 429.30 -7.42 <0.0001 5.39 0.1827 7 <0.0001 1 0.0371 2
p48 X74262 —-1115.97 15235 -7.33 <0.0001 5.24 0.2268 8 <0.0001 2 0.0911 6
Proteasome iota chain X59417 —3331.23 481.79 -6.91 <0.0001 3.94 0.3777 12 <0.0001 3  0.3756 23
Myosin light chain (alkali) M31211 —408.99 59.50 -6.87 <0.0001 3.57 0.1584 5 <0.0001 4 0.2854 19
Macmarcks HG1612- —2512.37 372.76 —6.74 <0.0001 2.87 0.2555 9 <0.0001 5 0.0432 3
HT1612
Transcription factor 3 M65214 —471.84 70.04 -6.74 <0.0001 1.56 0.1759 6 <0.0001 6 0.8348 >59
(E2A)
Inducible protein L47738 —1055.39 159.50 -6.62 <0.0001 6.64 0.7782 23  0.0012 7 0.0584 5
MB-1 (CD79b) U05259 —3399.02 523.02 -6.50 <0.0001 12.26 1.0000 >28  0.0016 8 1.0000 >59
Crystallin zeta (quinone L13278 —118.93 1833 -6.49 <0.0001 27.36 0.4366 16 0.0018 9 0.5629 37
reductase)
Transcriptional activator D26156 —766.23 118.24 —-6.48 <0.0001 235 0.3940 13 0.0019 10 0.4304 18
hSNF2b
Acyl-Coenzyme A M91432 —669.68 104.25 —-6.42 <0.0001 4.29 1.0000 >28 0.0020 11 0.1626 11
dehydrogenase, C-4 to
C-12 straight chain
Oncoprotein 18 M31303  —2013.15 314.83 —-6.39 <0.0001 2.12 0.0309 2 0.0029 13 0.1874 13
Thymopoietin beta u09087 —125.08 19.56 —-6.39 <0.0001 3.43 0.8446 26 0.0023 12 0.3277 22
Cyclin D3 M92287  —3025.10 484.75 -6.24 <0.0001 3.86 1.0000 >28 0.0035 14 0.0911 7
Serine kinase SRPK2 U88666 —105.40 16.98 -6.21 <0.0001 2.08 0.4101 15 0.0044 17 0.7333 44
Transcription factor 3 M31523  —1044.46 169.32 -6.17 <0.0001 4.38 1.0000 >28 0.0043 15 0.0371 1
(E2A)
Adenosine triphosphatase, 769881 —1809.52 29338 -6.17 <0.0001 7.26 1.0000 >28 0.0043 16 0.6423 39
calcium
IEF SSP 9502 L07758 —278.58 4528 —6.15 <0.0001 2.06 0.5292 19 0.0052 18 0.2483 18
Minichromosome D38073 —598.54 97.78 —-6.12 <0.0001 2.85 0.8160 24 0.0055 20 0.4921 29
maintenance deficient 3
Cytoplasmic dynein U32944 —1349.78 221.68 —-6.09 <0.0001 5.16 1.0000 >28 0.0054 19 1.0000 >59
light chain 1
Aldehyde reductase 1 X15414 —818.57 13598 -6.02 <0.0001 2.26 0.0312 20 0.0090 24 0.4305 27
Spectrin, alpha, non- 05243 —732.24 12222 -5.99 <0.0001 6.26 1.0000 >28 0.0078 21 0.1626 12
erythrocytic 1
(alpha-fodrin)
Rabaptin-5 Y08612 —220.83 3690 -5.98 <0.0001 2.20 1.0000 >28 0.0079 23 1.0000 >59
Topoisomerase (DNA) Z15115 —2927.58 490.37 -5.97 <0.0001 3.20 1.0000 >28 0.0079 22 0.0678 5
Il beta
HKR-T1 $50223 —287.95 4838 -595 <0.0001 5.68 0.5208 18 0.0097 25 1.0000 >59

Dataset from Golub et al. (1999).

!P-value computed from Z-score using a modified Bonferroni’s correction.
2P-value obtained from t-test with equivalent variances using a modified Bonferroni’s correction.
*Relative ranking by significance values obtained from t-test with equivalent variances. >28 indicates that the gene was not ranked because the

P-value was 1.0.

“P-value obtained from t-test with unequal variances using a modified Bonferroni’s correction.

®Relative ranking by significance values obtained from t-test with unequal variances.

¢p-value obtained from Wilcoxon rank sum using a modified Bonferroni’s correction.

“Relative ranking by Wilcoxon significance values. >59 indicates that the gene was not ranked because the P-value was 1.0.

28-33) and five patients survived (patients 34-38) (see www.
genome.wi.mit.edu/MPR [Golub et al. 1999]). The 25 tran-
scripts with the highest Z-scores from the comparison of these
groups are listed in Table 4, five of which had a Z-score greater
than 4.8. As above, neither t-tests nor Wilcoxon rank sum
identified any genes as differentially expressed between these
groups at a 1% significance level (Table 4). We examined the
chromosomal locations of the corresponding genes because
chromosomal abnormalities are prevalent in leukemia and
often have prognostic implications (El-Rifai et al. 1997; Row-
ley 2000). Almost all of the genes listed in Table 4 lie in re-
gions that have been identified previously to contain abnor-
malities in AML or other forms of leukemia. Furthermore,
three of the genes are encoded within 5q11-31, four are in the
2q region, two are within 1q32-26, and two others are found
at 6p12-pl1 (Table 4). The identification of five “mini-
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clusters” of chromosomal locales in the top 25 genes from a
random pool of 6800+ genes is striking. Of note, the region
5q11-31 is frequently lost in AML and known to influence
prognosis (Shipley et al. 1996; El-Rifai et al. 1997; Van den
Berghe and Michaux 1997). Furthermore, Set (Li et al. 1996)
and HoxA9 (Lawrence et al. 1999) are known to play a role in
AML progression, and COL4A4 (Verfaillie et al. 1992), thiore-
doxin (Nilsson et al. 2000; Soderberg et al. 2000), caspase-8
(Pervaiz et al. 1999), integrin betaS (Feng et al. 1999), a-tubu-
lin (Hirose and Takiguchi 1995), and SPS2 (Soderberg et al.
2000) may well contribute to the disease. Although it should
be kept in mind that clinical outcome is influenced by a num-
ber of nongenetic factors, including patient age, time of di-
agnosis, and treatment protocol, the above findings are prom-
ising for the discovery of prognostic indicators using genome-
wide microarray analysis.
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Table 3. Top 15 Genes Whose Expression Profiles Correlated with Differential Expression of TPO Among 11 AML Samples

Gene description Probe Z-score  P-value' ttest? W.rs?2 Relation to TPO and/or hematopoiesis

Thrombopoietin (TPO) L36051 -9.39  <0.0001 0.0971 1.000 TPO supports megakaryopoiesis, most important
regulator of platelet production (Caen et al. 1999).

Jagged 1 U73936 6.26  <0.0001 1.0000 1.0000 Jagged 1 signaling through notch 1 plays a role in
hematopoiesis (Schroeder and Just 2000).

Carboxypeptidase j04970 —5.81 <0.0001 1.0000 1.0000 MAX.1 associated with monocyte to macrophage

(MAX.T) differentiation and is expressed in AML cells
(Rehli et al. 1995).

Dynamin 1 L07807 —5.27 0.0010  1.0000 1.0000 Dynamin 1 induced by Grb2 when monocytes
stimulated with M-CSF (Kharbanda et al. 1995).

Neutrophil gelatinase X99133 5.24 0.0011 1.0000 1.0000  NGAL mainly expressed in myeloid cells (Bundgaard

B-associated lipocalin et al. 1994), NGAL specific granules are marker for
(NGAL) neutrophil maturation (Le Cabec et al. 1997).

Beta 1 integrin D U33880 -5.12 0.0021 1.0000 1.0000  TPO up-regulates adhesion of hematopoetic
progenitors to fibronectin through activation of
integrin alpha4betal and alpha5Sbetal (Gotoh
et al. 1997).

Sp4 transcription factor ~ X68561 —5.06 0.0030  1.0000 1.0000 Sp4 not well characterized but closely related to Sp1

Prothrombin

Wilms tumor 1 X69950 4.65 0.0236  1.0000

LIM-homeobox domain ~ U11701 —4.61 0.0284  1.0000
(hLH-2)

Mitochondrial creatine J04469 —4.61 0.0284  1.0000
kinase

Thrombospondin 2 HG896- 4.61 0.0286  1.0000
(TSP2) HT896

Lysyl hydroxylase 2 U84573 4.49 0.0507  1.0000
(PLOD2)

Serotonin receptor M83181 4.33 0.1039  1.0000

Karyopherin beta 3 U72761 4.30 0.1192  1.0000

M17262 4.86 0.0082  1.0000

(Suske 1999), TPO activates several Sp1-dependent
genes during megakaryopoiesis (Wang et al. 1999).

1.0000 Thrombin cleaves TPO to various isoforms (Kato et al.
1997), thrombin and TPO may co-regulate
myeloid differentiation (van Willigen et al. 2000).

1.0000  WT1 inhibits differentiation of myeloid progenitor
cells (Tsuboi et al. 1999).

1.0000  hLH-2 has a role in control of cell fate decision
and/or hematopoietic proliferation (Pinto do et al.
1998).

1.0000 ?

1.0000  TSP2 inhibits tumor growth and angiogenesis (Streit
et al. 1999), close relative thrombospondin 1 is
negative regulator of megakaryopoiesis (Chen et
al. 1997; Touhami et al. 1997).

1.0000 ?

1.0000  Serotonin secretion stimulated by TPO (Fontenay-
Roupie et al. 1998).
1.0000 ?

Dataset from Golub et al. (1999).

!P-value computed from Z-score using a modified Bonferroni’s correction.

2P-value obtained from t-test with unequal variances using a modified Bonferroni’s correction. When equal variances were assumed, the P-value
for TPO was 0.1105 and the P-values for the other genes did not change.

3P-value obtained from Wilcoxon rank sum using a modified Bonferroni’s correction.

DISCUSSION

The Z-scores we propose for testing differences of mean ex-
pression levels between two groups are connected closely with
classical t-tests or Wilcoxon rank sum statistics, but it is im-
portant to realize that there are subtle differences between
these tests. The t-test requires that expression levels be nor-
mally distributed and homogeneous within groups, and may
also require equal variances between the groups. In contrast,
the estimating equation technique we used to calculate Z-
scores does not require any distributional assumptions or ho-
mogeneity of variances (see Methods for details). In practice,
Z-scores are expected to be similar to t-test statistics, particu-
larly those calculated assuming unequal variances, when the
distribution of expression levels can be approximated by the
normal distribution. When these assumptions are violated,
Z-scores will differ from t-statistics and will be more reliable
for making statistical inferences. On the other hand, the Wil-
coxon statistic for two-group comparisons is nonparametric
and thus robust. However, its power is reduced, which could
be of concern in light of small sample sizes in typical array

studies. Indeed, the Wilcoxon test did not detect any genes as
differentially expressed between AML and ALL at the 1% ge-
nomic significance level (Tables 1 and 2, data not shown).
Finally, there is no obvious method, besides ad hoc correc-
tions of the expression values, to adjust for heterogeneity
among samples when using the t-test or Wilcoxon statistics.
The regression paradigm we propose provides a natural cor-
rection for heterogeneity using all expression values.

It is important to note that we analyzed the leukemia
data without applying any questionable filtering methods to
the Affymetrix data. For example, we did not subtract a back-
ground noise level from the data, rescale any values other
than to correct for between-chip heterogeneity, or remove
genes based on fluorescent signal intensities or Affymetrix
present/absent calls. These filtering techniques may be re-
quired to make the strongest associations when clustering
data or when calculating fold changes in means. However, ad
hoc filtering could remove potential genes of interest, espe-
cially those with modest expression levels, and therefore re-
duce the power of discovery. For example, the difference of
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Table 4. Top 25 Genes Differentially Expressed between AML Patients Who Lived or Died After Treatment

Gene description Probe Z-score P-value' ttest?> W.r.s.? Locus* Locus anomalies observed in AML
Alpha IV collagen D17391 —5.96 <0.0001 1.0000 1.0000 2qg35-q37 Rearrangement (Berger et al. 1991), ring
formation (Whang-Peng et al. 1987)

Integrin beta-5 subunit X53002 5.24 0.0011 1.0000 1.0000 3 (q22?) Inversion, translocation (Testoni et al. 1999)

Pyrroline-5-carboxylate X94453 5.00 0.0041 1.0000 1.0000 10g24.3 Translocation in CML (Aguiar et al. 1997),
synthetase hotspot for translocations in ALL (Kagan

et al. 1989; Salvati et al. 1999)

Alpha-tubulin X01703 4.96 0.0051 1.0000 1.0000 2q ?, Rearrangement (Berger et al. 1991),

ring formation (Whang-Peng et al. 1987)
KIAA0076 D38548 —4.84  0.0092 1.0000 1.0000 6 (p12-21?) Rearrangement (Raynaud et al. 1994;
Haase et al. 1995)
Cockayne syndrome U28413 4.74 0.0147 1.0000 1.0000 5 (q13?) 5g11-31 frequently lost in AML (Shipley
complementation et al. 1996; Van den Berghe and
group A Michaux 1997)
Set M93651 4.73 0.0158 1.0000 1.0000 9934 Translocation, may create Set-Can fusion
(von Lindern et al. 1992)

KIAA0172 D79994 —4.63 0.0254 1.0000 1.0000 9 (p?) 9p abnormalities are common in leukemia
and other cancers (Ragione and lolascon
1997)

Selenophosphate U43286 4.61 0.0285 1.0000 1.0000 (16p or 10g)? Inversions and translocations are common
synthetase 2 in 16p (Marlton et al. 1995; Mancini et
(SPS2) al. 2000), CML/ALL translocations

identified in 10q (Kagan et al. 1989;
Aguiar et al. 1997; Salvati et al. 1999)
Centromere 715005 —4.60  0.0293 1.0000 1.0000 4q24-925 4925 translocation in ALL (Nowell et al.
protein E 1986)
(312kD)
Thioredoxin X77584 4.54  0.0392 1.0000 1.0000 9qg31 Loss (Shipley et al. 1996)
PIG-B D42138 —4.53  0.0409 1.0000 1.0000 15g21-q22 15q observed deleted or translocated
(Gogineni et al. 1997; Grimwade et al.
1997)

Survival motor ugoo17 432 0.1088 1.0000 1.0000 5q13 5q11-31 frequently lost in AML (Shipley
neuron protein et al. 1996; Van den Berghe and
SMN Michaux 1997)

Caspase-8 X98176  —4.22 0.1755 1.0000 1.0000 2g33-q34 Duplication in non-Hodgkin’s lymphoma

(Bajalica-Lagercrantz et al. 1996), ring
formation (Whang-Peng et al. 1987)

Bullous pemphigoid M69225 —4.21 0.1795 1.0000 1.0000 6p12-p11 Rearrangement (Raynaud et al. 1994;
antigen Haase et al. 1995)

Sp2 transcription D28588 —4.18  0.2020 1.0000 1.0000 17g21.3-q22  Translocation spot (Melnick et al. 1999),
factor isochromosomes on 17q common

(Fioretos et al. 1999)
Biglycan J04599 —-4.17  0.2119 1.0000 1.0000 Xqg28 Translocation found in AML (Weis et al.
1985), common in ALL (Stern 1996)
26S proteasome- U86782 4.16  0.2226 1.0000 1.0000 2 (g24-32?) Duplication in non-Hodgkin’s lymphoma
associated pad1 (Bajalica-Lagercrantz et al. 1996), ring
homolog (POH1) formation (Whang-Peng et al. 1987)

Homeobox-like L32606 4.14  0.2427 1.0000 1.0000 ? ?

Pre-mRNA splicing L14076  —4.13  0.2582 1.0000 1.0000 1 (p32-36?) 1p32 and 1p36 both involved in
factor SRP75 translocations (Selypes and Laszlo 1987;

Shimizu et al. 2000)

Autoantigen PM-SCL X66113 —4.12  0.2614 1.0000 1.0000 1p36 Translocation (Shimizu et al. 2000)

Bactericidal/permeability- 04739 4.09 0.3030 1.0000 1.0000 20qg11.23-q12 Deletion (commonly deleted in MDS)
increasing protein (Fracchiolla et al. 1998)

HoxA9 u82759 4.04 0.3836 1.0000 1.0000 7pl15-p14 Inversion (Stanley et al. 1997)

Matrin 3 M63483 4.03  0.3940 1.0000 1.0000

Dataset from Golub et al. (1999).
!P-value computed from Z-score using a modified Bonferroni’s correction.
2P-value obtained from tPvalue for TPO was 0.1105 and the Pvalues for the otehr genes did not change.?P-value obtained from Wilcoxon rank
sum using a modified Bonferroni’s correction.
“Chromosomal locus determined by survey of NCBI LocusLink (http://www.ncbi.nlm.nih.gov/LocusLink). Purative loci are shown in

parentheses.

only a few transcripts to zero transcripts per cell may become
undetectable after applying filtering techniques, but could
nevertheless have a very real biological significance or present
a considerable opportunity to target a cell specifically for
therapeutic treatment. To illustrate this point, we note that
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TPO was called absent by the Affymetrix software in every
sample in the leukemia data set. Nevertheless, by dichotomiz-
ing the AML samples along the lines of TPO expression values,
we were able to uncover a group of proteins that interact
directly with TPO or perform similar cellular functions.
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Another distinct advantage of statistical modeling is that
these tests take advantage of the random variations (i.e.,
“noise”) in the data. For example, the mean expression level
of activation-induced C-type lectin (AICL) was threefold
higher in AML than ALL, and the absolute mean difference
was substantial at 826 units. Considering that AICL is ex-
pressed in a variety of hematopoietic-derived cell lines
(Hamann et al. 1997), one might reasonably conclude that
AICL was indeed overexpressed in AML based on this evi-
dence. However, our modeling approach gave AICL a Z-score
of 0.91. This apparent discrepancy is explained by the fact
that one of the AICL samples in the AML set had an intensity
value more than fivefold higher than any other. Excluding
just this one sample, the relative and absolute mean differ-
ences for AICL between AML and ALL were 1.3-fold and
—94 = 216, respectively. Clearly, simple comparisons of fold
changes are insufficient for drawing proper conclusions.

Our modeling approach can be extended. First, we can
incorporate nonlinear models or apply other transformations
to the observed expression levels to account for nonlinearity
in fluorescent intensity. Second, the model (equation 1 in
Methods) can be extended naturally to incorporate additional
covariates. For example, in a clinical study of multiple pa-
tients, one may be interested in assessing the association of
expression profiles with several clinical variables. Third, one
may extend the model (equation 1) by incorporating non-
parametric smoothing function for a continuous covariate,
for example, in the assessment of nonlinear dose-response
relationship. Fourth, as our knowledge accumulates about the
genetic regulatory circuitry of multiple genes, we may be able
to formulate a functional relationship among genes, via pos-
tulating a “high-level” model for regression coefficients
a(m) = (ay,0y,. . .,a;) and B(m) = (1,82, . -,B)), in which =
could be a common set of parameters characterizing the en-
tire genetic regulatory circuitry. One may then test how well
such a genetic circuitry model fits the data using estimating
equations.

The main limitation of the current approach is associated
with the calculation of P-values. As noted earlier, a Z-score of
4.8 is chosen to ensure that the genome-wide significance is
controlled at 1% for the Affymetrix 6800 GeneChips. How-
ever, the calculation of the corresponding P-value relies on
the asymptotic normal distribution for Z-scores. With small
to modest sample sizes this normality may be questionable,
and such a threshold value is overly conservative. Currently,
we are developing simulation-based methods to evaluate the
exact significance level. It is also important to note that for
the purpose of discovery science with small sample sizes, the
Z-score 4.8 threshold value should be treated as a tentative
guideline. In the context of testing associations with a specific
candidate gene, the accepted threshold value to ensure the
false-error rate of 1% for a single gene is a Z-score of 2.58.
Finally, we note that the Bonferroni’s correction or modifica-
tions thereof do not take into account covariation of gene
expression levels, resulting in conservative estimates for the
P-values. Our future research will improve on Bonferroni’s
correction by acknowledging expression dependencies
among genes.

The capability of simultaneously assessing the expression
of thousands of gene transcripts provides an opportunity of
monitoring cellular activity at the genomic level. We can
therefore begin addressing complex pathways of basic physi-
ology and disease etiology, the foundation of functional ge-
nomics. The development of the statistical method described

here provides a tool for researchers to pursue functional ge-
nomics systematically and rigorously. Modeling can also be
used to aid the design of efficient and robust functional ge-
nomic studies, and to develop methods that estimate sample
sizes and powers required for expression studies. The use of
rigorous statistical tools will help functional genomic studies
yield much-needed information in understanding human bi-
ology and pathology.

METHODS

Leukemia Study

The Affymetrix 6800 GeneChip oligonucleotide arrays con-
tain a combined total of 7070 oligonucleotide probe sets (ex-
cluding controls) for 6817 individual genes. Investigators at
the Massachusetts Institute of Technology gathered blood
samples from 38 leukemia patients (27 ALL and 11 AML) and
used Affymetrix Hu6800 GeneChip oligonucleotide arrays to
assess gene expression profiles for each patient (Golub et al.
1999). We used the training data set exclusively in this work.
Experimental protocols used to perform the microarray analy-
sis and the data values obtained are available to the public at
(http://waldo.wi.mit.edu/MPR/pubs.html).

Regression Model

An array of gene expression profiles may be conceptualized as
a vector of outcomes. Let Yy = (Y, YVy4,. .., Yy)' denote the
array, where Y, denotes the expression of the jth gene in the
kth sample (j=1,2,...J;k=1,2,.. ., K). Let x, denote a covari-
ate associating with each kth sample. For example, x, =1 for
the presence of a marker gene and x, = O for its absence. We
propose a regression model for the expression level of the jth
gene in the kth sample:

Vi = 8 + N(a; + byxp) + gy, 1)

in which (a;, b;) are gene-specific regression coefficients,
(8x,\y) are the sample-specific additive and multiplicative het-
erogeneity factors, respectively, and e is a random variable
reflecting variation due to sources other than the one identi-
fied by the known covariate and the systematic heterogeneity
between samples. Because x, is binary, a; measures the mean
expression level of the jth gene in normal samples (x, = 0),
and b; measures the difference of averaged expression levels of
the jth gene between the two sample groups.

The heterogeneity factors, (§;,A,), are introduced to ac-
count for variations in preparing multiple mRNA samples.
Such corrections have been well conceived in comparing two
samples. Under the null hypothesis of no overall differential
expression between these two samples, one can adjust this
heterogeneity by normalizing the sample data to fall on the
diagonal line, a common technique (Wodicka et al. 1997). An
intercept may also be estimated to ensure the numerical sta-
bility. If the intercept is different from zero, the diagonal line
is adjusted to compensate. Formalizing this correction, one
may assume that typical genome-wide expression patterns are
stable, and hence may use a linear model, py = 8, + \a;, to
characterize average expression values for every gene in every
sample. These heterogeneity factors are then estimated via the
weighted least square method (Carroll and Ruppert 1988).
Estimated heterogeneity factors are used to adjust the ob-
served expression level as (Y — 8;)/\, and corrected expres-
sion values are then used for further analysis under the above
model (equation 1).

The random variation, &, is used to depict variations
due to all unknown sources. Specifically, this variation may
be associated with sampling preparations, cross-hybridization
of genes, or other anomalies on microarrays. The stochastic
distribution of these random variations is typically unknown
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and is unlikely to follow any familiar distributions, such as
the normal distribution. Hence, no distribution assumption is
made.

Analytic Strategy

The first step in the statistical analysis of oligonucleotide-
array expression profiles is preprocessing of the data, which
includes elimination of control genes and transformation of
the data (e.g., logarithmic transformation) as desired. The sec-
ond step is to examine heterogeneity among samples by esti-
mating additive and multiplicative heterogeneity factors,
(8 M) The estimate is obtained via minimizing the weighted
least square, 3, (Ve — 8 — )\ka,»)zwi’l, where the summation
is over all genes and samples (Carroll and Ruppert 1988). The
weight is chosen so that the contribution of every gene is
standardized between 0 and 1. Consequently, the above
weighted least square equals the number of genes when
samples are homogeneous. The estimated parameters (8;,\;)
are used to correct the data. Because we do not impose distri-
butional assumptions about residuals, the third step is to use
the weighted least square (Huber 1967) to estimate gene-
specific parameters (a;, b)) in the model (equation 1). The cor-
responding robust standard errors for each gene are calculated
using estimating equation theory (Godambe 1960; Liang and
Zeger 1986; Prentice and Zhao 1991). Z-scores for each gene
are computed as the ratio of mean difference between the two
groups for each gene, b;, over the standard error for the cor-
responding gene, S.E.;.

Statistical Significance and Multiple Comparisons

To measure the significance of the findings, we translated
Z-scores into P-values under asymptotic normality. To address
the multiple comparison issue, we adjusted the threshold for
declaring genes differentially expressed using a modified Bon-
ferroni’s correction proposed by Hochberg (1988). The Hoch-
berg stepdown method divides the P-values by the total num-
ber of comparisons with equal or lesser test statistics; for 7070
probe sets, the 1% genomic significance level for the probe set
with the highest test statistic is 0.01/7070, the genomic sig-
nificance threshold for the probe set with the second highest
test statistic is 0.01/7069, etc.

t-test and Wilcoxon Rank Sum Test

The f-test and Wilcoxon rank sum test were performed after
correcting the data for heterogeneity using our regression ap-
proach. t-tests were performed assuming both equal and un-
equal variances between the sample groups. The functions
used were those built into MATLABMathWorks). The P-values
derived from these tests were adjusted using the modified
Bonferroni’s correction described above.
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