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Ruijter, Jan M., Antoine H. C. van Kampen, and Frank Baas.
Statistical evaluation of SAGE libraries: consequences for experimental
design. Physiol Genomics 11: 37–44, 2002; 10.1152/physiolgenom-
ics.00042.2002.—Since the introduction of serial analysis of gene expres-
sion (SAGE) as a method to quantitatively analyze the differential
expression of genes, several statistical tests have been published for the
pairwise comparison of SAGE libraries. Testing the difference between
the number of specific tags found in two SAGE libraries is hampered by
the fact that each SAGE library is only one measurement: the necessary
information on biological variation or experimental precision is not
available. In the currently available tests, a measure of this variance is
obtained from simulation or based on the properties of the tag distribu-
tion. To help the user of SAGE to decide between these tests, five
different pairwise tests have been compared by determining the critical
values, that is, the lowest number of tags that, given an observed number
of tags in one library, needs to be found in the other library to result in
a significant P value. The five tests included in this comparison are
SAGE300, the tests described by Madden et al. (Oncogene 15: 1079–
1085, 1997) and by Audic and Claverie (Genome Res 7: 986–995, 1997),
Fisher’s Exact test, and the Z test, which is equivalent to the chi-squared
test. The comparison showed that, for SAGE libraries of equal as well as
different size, SAGE300, Fisher’s Exact test, Z test, and the Audic and
Claverie test have critical values within 1.5% of each other. This indi-
cates that these four tests will give essentially the same results when
applied to SAGE libraries. The Madden test, which can only be used for
libraries of similar size, is, with 25% higher critical values, more conser-
vative, probably because the variance measure in its test statistic is not
appropriate for hypothesis testing. The consequences for the choice of
SAGE library sizes are discussed.

critical values; hypothesis test; two-sided test; library size; power; serial
analysis of gene expression

SERIAL ANALYSIS OF GENE EXPRESSION (SAGE; 17) was intro-
duced as a method to quantitatively analyze the differ-
ential expression of genes. The method has since been

applied successfully to cells and tissues obtained from
different developmental stages or resulting from a vari-
ety of pathological processes. The SAGE procedure re-
sults in a library of short tags, each representing an
expressed gene. The main assumption in the interpreta-
tion of the data in this library is that every mRNA copy in
the tissue has the same chance of ending up as a tag in
the library. This selection of a specific tag sequence from
the total pool of transcripts can be well approximated as
sampling with replacement (15).
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The aim of most SAGE studies is to identify genes of
interest by comparing the number of specific tags found
in two different SAGE libraries. In statistical terms,
the aim is to reject the null hypothesis that the ob-
served tag counts in both libraries are equal. Testing of
this hypothesis is hampered by the fact that each
SAGE library is only one measurement: the necessary
information on biological variation and experimental
precision is not available. Therefore, each of the pub-
lished statistical tests for comparing SAGE libraries is
based on its own assumptions about the statistical
distribution of SAGE tags from which a measure of
variance is obtained.

In comparing two SAGE libraries, a large number of
pairwise tests, one for each specific tag, is performed. It
is possible that most pairwise differences between two
libraries are just the result of random sampling from
two populations that do not differ. Therefore, before
starting a pairwise comparison of specific tags in two
libraries, the null hypothesis that the differences be-
tween libraries result from such a random sampling
has to be rejected. A similar line of reasoning is applied
in the comparison of the means of more than two
groups: before a multiple comparison of groups can be
carried out, an overall analysis of variance has to reject
the null hypothesis that all groups originate from the
same population (2). In the context of SAGE research,
only one reference to such an overall test has been
published (14). This overall test is based on a simula-
tion of a large number of possible distributions of two
libraries within the pooled marginal totals of the ob-
served SAGE libraries. By calculating a chi-squared
statistic for each simulated pair of libraries, a distri-
bution of this statistic under the null hypothesis can be
constructed. From this simulated distribution and the
chi-squared statistic of the observed libraries, one can
determine the probability of obtaining the observed tag
distributions by chance. Rejection of the null hypothe-

sis that all differences between SAGE libraries are just
the result of random sampling then opens the way for
pairwise comparisons.

In the seminal paper of Velculescu et al. (17), tag
numbers in different libraries are compared pairwise
with a test based on a Monte Carlo simulation of tag
counts. This test has been included into the SAGE
software package SAGE300 (19). SAGE300 determines
for each pairwise comparison of tags the chance of
obtaining a difference in tag counts equal to or greater
than the observed difference from the number of trials
it takes to simulate this difference 100 times. The
resulting chance serves as P value in a one-sided test.

In other papers dealing with SAGE, several pairwise
test procedures have been proposed. Most of these tests
have been incorporated into public database systems
and analysis programs (5, 8, 10, 11, 13, 15). The test
suggested by Madden et al. (11) is based on only the
number of observed specific tags in each SAGE library,
and the calculated statistic (Table 1) is compared with
the normal distribution. Audic and Claverie (3) derived
a new equation (Table 1) for the probability, P(n2�n1), of
finding n2 tags in one library given the fact that n1 tags
have already been observed in the other library. The
sum �P(n2�n1) of this probability for n2 or more tags
then serves as a one-sided test. The test proposed by
Kal and coworkers (7) focuses on the proportions of
specific tags in each library. Since these proportions
can be approximated to result from sampling with
replacement, the probability of the resulting tag counts
follows a binomial distribution (15). The proposed test
is therefore based on the normal approximation of the
binomial distribution (Z test; 7). The test statistic Z is
calculated as the observed difference between propor-
tions of specific tags in both libraries divided by the
standard error of this difference when the null hypoth-
esis is true (Table 1). This Z statistic is approximately
normally distributed and can be compared with the

Table 1. Reference, test statistic, and decision rule for each of the tests that have been compared in this study

Reference Statistic/P value Decision Rule

Kal et al. 1999 (7) (Z-test) Z �
p1 � p2

�p0�1 � p0�� 1
N1

�
1

N2
� reject H0 when Z � Z�/2 or Z � � Z�/2

Madden et al. 1997 (11) Z �
n1 � n2

�n1 � �n2

reject H0 when Z � Z�/2 or Z � � Z�/2

Audic and Claverie 1997 (3) P�n2�n1� �
�N2/N1�

n2�n1 � n2�!
n1!n2!�1 � N2/N1�

�n1 � n2 � 1� reject H0 when �
i � n2

�

P�i�n1� �
�

2

Zhang et al. 1997 (19) (SAGE300) P chance from Monte Carlo simulation reject H0 when P � �/2

Fisher’s Exact test P�n1,n2� � �N1

n1
��N2

n2
� ��N1 � N2

n1 � n2
� reject H0 when �

i � 0

n1

P�i,n1 � n2 � i� �
�

2

Since in serial analysis of gene expression (SAGE) experiments no a priori knowledge about the direction of the effects is available, all
decision rules are formulated for a two-sided test of the null hypothesis (H0). Total sample sizes of the two SAGE libraries are designated
N1 and N2, the number of specific tags observed in these libraries are designated n1 and n2. The proportions of specific tags used in the Z-test
(Kal et al. 1999, Ref. 7) are calculated as p1 � n1/N1 and p2 � n2/N2. The proportion p0, the expected proportion when the null hypothesis
is true, is calculated as p0 � (n1 � n2)/(N1 � N2). Note that the probability P(n2�n1) given by Audic and Claverie’s test has to be summed
over i from to n2 to infinity to give a one-sided P value. For this test only the situation where n1 � n2 is considered.
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critical Z value for the two-sided significance level
� (2).

The Fisher’s Exact test has been proposed by the
Cancer Genome Anatomy Project for comparison of
specific tags between SAGE libraries (3, 12). Also, the
chi-squared test has been used (14). Both tests are
based on reorganizing the data per tag in a 2 � 2
contingency table (rows: specific and other tags; col-
umns: library 1 and 2). Fisher’s Exact test calculates
the pooled probability of obtaining the observed table
and all tables with a more extreme difference within
the row and column totals (2). The use of Fisher’s Exact
test is controversial because the requirement that the
row and column totals must be fixed and known prior
to the experiment (5, 6) leads to conservative P values
(1). However, the test can be used in situations such as
SAGE, where the marginal totals are not naturally
fixed, because the use of marginal totals is ancillary
and does not lead to loss of information on the null
hypothesis (1). Therefore, the Fisher’s Exact test is
included in the comparison of tests. For the large
numbers of tags involved in SAGE, the chi-squared test
is the preferred test for 2 � 2 contingency tables (2, 6).
The chi-squared test is, however, not included in the
current comparison because a chi-squared test on 2 �
2 tables is statistically equivalent to the Z test on two
proportions (2, 12) and, therefore, gives exactly the
same results as the Z test. Two approaches based on
Bayesian statistics (4, 10) have been described to cal-
culate the probability that the level of expression of a
given mRNA is increased by at least x-fold between
libraries. Although these procedures can be used to
statistically judge differences in tag numbers, their
approach is clearly different from the classic approach
of hypothesis testing, and results of both test proce-
dures cannot be directly compared.

Recently the chi-squared test, Fisher’s Exact test,
and the Audic and Claverie test were compared with
respect to their power and robustness (12). The Mad-
den test and SAGE300 were not included in this com-
parison, nor was there a comparison of the differences
that are needed to lead to a statistically significant
result. The latter hampers the comparison of test re-
sults in different papers. Therefore, and to further help
the user of SAGE to decide between the available tests,
the present review compares the critical values of five
tests (excluding the chi-squared test). Critical values,
sometimes called “first significant values” (3), are de-
fined as the highest or lowest number of tags that,
given an observed number of tags in one library, needs
to be found in the other library to result in a P value
below the significance level when the pairwise test is
carried out.

Table 1 lists the five tests for pairwise testing of
SAGE libraries that have been compared. It also gives
the test statistic and the decision rule of each test. For
details on the statistical basis of each of these tests, the
reader is referred to the original papers. For all tests
the null hypothesis (H0) is that there is no difference in
tag numbers between the two libraries. The five tests
were compared by determining their critical values for

a significance level of 0.001. Such a low significance
level was chosen to safeguard against accumulation of
type I error. The use of a significance level of 0.001 is
equivalent to an overall significance level of 0.05 and a
Bonferroni correction to allow for 50 hypothesis tests (2).

In this review only the upper critical values are
considered. Critical values were determined by taking
a fixed tag count in the first library and subsequently
performing the statistical test for an increasing num-
ber of tags in the second library until the resulting P
value leads to rejection of the null hypothesis at the
required level of significance. Since the Monte Carlo-
based test of SAGE300 does not give the same P value
every time the same input is tested, for each input the
test was run six times and the mean P value was used.
Such an average P value based on three trials is also
given by SAGE300 in its “analyze”-“entire project” op-
tion.

All critical values were determined for 1) a total
number of 10,000 tags in both SAGE libraries (N1 �
N2 � 10,000) and 2) a total of 10,000 tags in the first
and 50,000 tags in the second library (N1 � 10,000;
N2 � 50,000). The values for the number of specific
tags observed in the first library (n1) ranged from 1 to
100, effectively testing an abundance range of 0.0001
to 0.01. The critical values are the number of specific
tags that have to be found in the second library (n2) and
are determined by systematic simulation of an increas-
ing difference between the two libraries. It should be
kept in mind that in most comparisons between specific
tags in SAGE libraries, there is no a priori knowledge
about the direction of the effect. Therefore, all pairwise
tests have to be carried out as a two-sided test. To do
this, the test statistic Z (7, 11) was compared with Z�/2,
whereas the one-sided P values of SAGE300 as well as
the integrated probabilities of the Audic and Claverie
test and of the Fisher’s Exact test were compared with
�/2 (Table 1).

The upper critical values for a 0.001 level of signifi-
cance for the Z test of Kal et al. (7) are given in Fig. 1
for two SAGE libraries of equal size (Fig. 1A; both
10,000 tags) and for two SAGE libraries of different
size (Fig. 1B; 10,000 and 50,000 tags, respectively) as
continuous lines. Note that for a larger SAGE library
the confidence level of an observed tag count is higher
(7). Therefore, with a large second SAGE library,
smaller differences in proportions can be detected as
statistically significant. For two libraries of the same
size (N) and relatively low tag counts (n1 � n2 less than
1% of 2N) the test statistic Z of the Z test (Table 1)
reduces to Z � (n1 	 n2)/
(n1 � n2). Thus, for low tag
counts and two large libraries of the same size, the
critical values of the Z test are independent of library
size.

The critical values for the test of Madden et al. (11)
for two libraries of the same size are plotted in Fig. 1A.
Compared with the critical values of the Z test, the
Madden test requires about 25% bigger differences to
reach statistical significance and is, therefore, more
conservative. Although the simple mathematics of this
test (Table 1) make it very easy to use, its usefulness is
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limited by the fact that it does not include the total
number of tags in the calculations and it can, therefore,
only be used for SAGE libraries of the same, or very
similar, size. The origin of the test statistic of this test
is not given in the original paper (11), but when one
considers tag counts to fit a Poisson distribution, the
variance of a tag count can be estimated to be equal to
this tag count (2). The denominator of the test statistic
of the Madden test (Table 1) then contains the sum of
the standard deviations of the tag counts n1 and n2.
Statistics as applied by Madden effectively test the
hypothesis that the difference in tag counts is zero.
Therefore, one can argue that a denominator contain-
ing the standard deviation of this difference, that is,
the square root of the sum of the tag counts, might be
more appropriate. Note that this results in the same
equation as is derived in the previous section from the
test statistic of the Z test. For large libraries of very
similar size it gives the same critical values as the Z
test.

The test of Audic and Claverie (3), the Fisher’s Exact
test, and SAGE300 (19) all have critical values that are
on average within 1.5% of those of the Z test, for
libraries of equal size (Fig. 1A). This equivalence of
these four tests holds for tag counts as low as 1 tag per
10,000 in the first library. Only for libraries of different
size and low specific tag counts, the Z test needs
slightly higher critical values (Fig. 1B). Also, for other
levels of significance, the critical values of the Z test
are almost the same as those published for the Audic
and Claverie test (3). This comparison of tests shows
that, apart from the test of Madden et al. (11), all tests

perform with similar resolution in detecting differ-
ences between SAGE libraries. Also, except for Madden
et al., all tests can handle SAGE libraries of equal as
well as different size. Therefore, the tests published by
Kal et al. (7), Audic and Claverie (3), and Zhang et al.

Fig. 1. Comparison of critical values of five tests for the comparison of SAGE libraries. Critical values are defined
as the number of tags that needs to be found in the second SAGE library to be significantly different from the
number of tags already found in the first SAGE library. Upper critical values for a 0.001 level of significance for
the Z test (7), Fisher’s Exact test (2), SAGE 300 (16), and the tests of Madden et al. (11) and Audic and Claverie
(3). The critical values plotted in each graph are based on a first SAGE library with a total of 10,000 tags (reference
values plotted as dotted lines) and a second library with a total of 10,000 tags (A; critical values plotted on the left
y-axis) or a second library of 50,000 tags (B; critical values plotted on the right y-axis). In both graphs the
continuous line represents the critical values of the Z test. The Madden test is only compared for a second library
of 10,000 tags, because this test can only be used for libraries of similar size. Note that the number of tags in the
first library starts at 1 tag per 10,000.

Fig. 2. Equation based on the normal approximation of the binomial
distribution and its use for the planning and evaluation of SAGE
experiments (7). The left side of the equation shows the observed or
expected difference between proportions (p1 	 p2). The right side
includes the Z values for the significance level and the power (Z�/2

and Z�, respectively) (Note: power � 1 	 �). The two square roots are
the standard error of the difference between proportions under the
null hypothesis and under the alternative hypothesis, respectively.
In the equation, the proportion p1 stands for the number of specific
tags divided by the total number of tags in the first library (n1/N1).
Under the null hypothesis, when p1 � p2, this proportion is indicated
as p0 and calculated as p0 � (n1 � n2)/(N1 � N2). The encircled
numbers refer to the text.
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(19), as well as the Fisher’s Exact test, will all give the
same test results when applied for pairwise compari-
son of SAGE libraries.

In addition, a recent paper by Man and coworkers
(12) compared the chi-squared test, the test of Audic
and Claverie (3), and the Fisher’s Exact test. This
comparison was based on Monte Carlo simulations of
SAGE libraries. The specificity, power, and robustness
of the tests were determined for simulated SAGE li-

braries of various size and at severalfold difference.
This comparison showed that the chi-squared test has
consistently a higher power and is more robust than
the other tests, especially at low expression levels (�15
tags/50,000). Therefore, the chi-squared test, which is
equivalent to the Z test, was concluded to be the pre-
ferred choice for evaluating SAGE experiments (12).

The normal approximation of the binomial distribu-
tion that forms the basis of the Z test can also be used

Fig. 3. A: evaluation of SAGE experiments: Nomogram of critical values for the statistical comparison of a first
library of 50,000 tags with libraries of 5,000 to 100,000 tags. To be statistically significant at � � 0.001, the
observed number of tags in the second library should be above or below the appropriate pair of lines. The arrows
indicate that to be statistically different from 30 tags per 50,000, below 20 or above 117 specific tags have to be
found in a library of 100,000 tags. B: planning of SAGE experiments. Relation between library size and the
detectable difference between two SAGE libraries. The abundance of the transcript in the first (reference) library
of 50,000 tags is plotted on the x-axis. The abundance that has to be present in the second population to be found
as statistically significant at � � 0.001 and power � 0.9 is plotted on the y-axis and is given for second libraries
ranging in size from 5,000 to 100,000 tags (different lines). Note that the gain in resolution decreases when the
library size increases.

Fig. 4. Relation of library size and
power of the Z test. The power of the
statistical comparison of two libraries
was calculated for the occurrence of 50
specific tags per 50,000 (abundance
0.001) in the first library and increas-
ing number of specific tags in second
libraries ranging from 10,000 to
100,000 tags. Note that the power is
low when the difference in abundance
is low. The number of tags that is re-
quired to reach a power of 0.9 can be
found by tracing the power curve to the
value 0.9 and then dropping a line to
the x-axis. The arrows indicate that for
a power higher than 0.9 in a compari-
son with the reference condition (50
tags per 50,000), at least 190 tags have
to be found in a library of 100,000 tags,
whereas for the same power in the
comparison with a library of 10,000
tags, at least 40 specific tags are re-
quired.
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to easily construct confidence intervals for the observed
proportion of specific tags as well as for the difference
in proportions between two SAGE libraries (7). This
approximation also enables the determination of the
statistical power of the comparison of two SAGE librar-
ies and the calculation of the sample size needed to
detect an expected difference, both of which are essen-
tial in the planning of future SAGE analyses. A similar

decision about sample size can be reached with a
Monte Carlo-based program that calculates the power
of a test for a given difference and sample size (POW-
ER_SAGE; 12). Figure 2 shows a rearrangement of the
equation of the Z test in such a way that it can be used
for the evaluation and planning of SAGE experiments.
In this form this equation can be used in several ways.

1) Given N1 and N2 (the SAGE libraries are com-
piled), the critical values (Fig. 3A) or the detectable
differences (Fig. 3B) can be calculated for a chosen
significance level (�) and power (1 	 �).

2) Given an observed difference, the total number of
tags sequenced in both libraries, and the chosen signif-
icance level, the power of the test can be determined
(Fig. 4).

3) Given an expected difference, a significance level,
a power, and the number of tags already sequenced in
an existing SAGE library (N1), the number of tags that
is needed in a new library (N2) can be calculated
(Fig. 5).

4) Given an expected difference, a chosen signifi-
cance level, and a required power, the number of tags
that is needed in each library (N1 � N2) can be calcu-
lated (Fig. 6).

The nomogram in Fig. 3A can be used to quickly
evaluate the differences between two SAGE libraries
from the laboratory or the literature. To be statistically
significant (at � � 0.001) from the first library, the
number of specific tags found in the second library
should be above or below the appropriate pair of lines.
For example, when 30 specific tags are found in the
first library of 50,000 tags, a second library of 100,000
tags should yield below 20 or above 117 specific tags to
be significantly repressed or upregulated, respectively.
The graph of the detectable differences (Fig. 3B) can

Fig. 5. Number of tags that need to be sequenced in the second
library (N2) to detect a 2- to 20-fold difference as significant (at � �
0.001 and power � 0.9) when a first library of 10,000 (A) or 50,000 (B)
tags is already sequenced. To allow direct comparison, in both graphs
the abundance of the specific gene in the first population is taken as
the x-axis values per 50,000 transcripts. The almost vertical lines at
the top of A indicate that for low abundances in the first library it is
not possible to sequence enough tags in the second library to reach a
statistically significant difference. The standard error associated
with the proportion in the first library is already too large to ever
reach the significance level. The shift of all lines to the left of the
graph in B illustrates that with a higher number of tags in the first
library, the same fold difference can be detected for a less abundant
transcript.

Fig. 6. Number of tags that need to be sequenced in each of the
libraries to detect a 2- to 20-fold difference in abundance at a
significance level of 0.001 and a power of 0.9. Comparison with the
required tag numbers in Fig. 5 shows that the total number of tags
that need to be sequenced is always lower when both libraries have
the same size.
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help the reader to plan a SAGE experiment. Consider a
SAGE user who has already (from the laboratory or the
literature) the information on the tag counts in a li-
brary of 50,000 tags (N1) and plans the assembly of a
second library. It can be seen from Fig. 3B that with
increasing number of tags in this new library (N2),
smaller differences can be detected as significant. How-
ever, whereas upgrading N2 from 20,000 to 50,000 tags
still gives a substantial increase in resolution, the
sequencing of another 50,000 tags (N2 � 100,000) does
not seem to pay off statistically. However, the chances
of picking up very low abundant transcripts keep in-
creasing with library size.

The power of a performed test tells the user how big
the chance is that a real difference has been over-
looked, or, in statistical terms, that a false null hypoth-
esis is not rejected. The effect of the differences be-
tween libraries on the power of the statistical
comparison of these libraries is illustrated in Fig. 4.
Figure 4 shows this power as a function of the differ-
ence between a first library with 50 specific tags per
50,000 tags and second libraries of various sizes and
with different numbers of specific tags. Note that the
power is at its lowest when the differences in abun-
dance are low. From this graph it can be read that
when the abundance increases 1.5 times, the maxi-
mum power of the significance test will only be about
0.25: even when a second library of 100,000 tags is
generated, a real 1.5-fold increase would be missed
75% of the time. To reach an acceptable power of 0.9, at
least 190 tags per 100,000 should be observed. A
smaller library requires relatively larger differences:
at least 40 specific tags have to be observed in a library
of 10,000 tags to reach the same power.

Instead of looking at detectable differences and
power, one can also calculate the number of tags (N2)
needed to detect a 2- to 20-fold difference between the
new library and a library known from previous work or
the literature (6). The number of tags needed to ob-
serve an x-fold difference as significant increases expo-
nentially with decreasing abundance of the transcripts
in the first library (Fig. 5, A and B, x-axis) and with
decreasing difference between conditions (Fig. 5, sepa-
rate lines) making the detection of small differences for
low abundant transcripts a practical impossibility.
When the number of tags in the first library is low,
differences for the low abundant transcripts may never
be detectable. Because the standard error of a propor-
tion is a function of the proportion and the library size
[SE � 
(p(1 	 p)/N); Ref. 2] a small difference may
never exceed the critical value. In such a case one also
has to increase the size of the first library. A compar-
ison of Fig. 5 with Fig. 6 shows that, when no prior
knowledge on transcript abundance is available, the
most efficient way to set up a SAGE study is to compile
two SAGE libraries of equal size. For example, detect-
ing a 10-fold difference for a gene that occurs 10 times
in a library of 10,000 tags would take a second library
of at least 50,000 tags (Fig. 5A), whereas two new
libraries of both 14,000 tags would be sufficient (Fig. 6).

Other tests for pairwise comparison of SAGE librar-
ies may be proposed in the future. The usefulness of
such tests will be limited by the fact that each SAGE
library, no matter how large, only represents one ex-
perimental measurement. Consequently, one has no
information about the biological variation and the pre-
cision of the observed tag counts. Such a measure of
experimental variance is crucial for hypothesis testing.
In the currently available tests, this measure of vari-
ance is obtained from simulation (19) or based on the
putative properties of the tag distribution (3, 7, 11).
The test results will be dependent on the validity of
these assumptions. However, the above comparison
shows that the test results of SAGE300, Fisher’s Exact
test, the Z test, and the Audic and Claverie test differ
only marginally. Additional tests will, therefore, only
be a significant addition to SAGE statistics when these
issues of experimental variance and accuracy are ad-
dressed. Probably the modeling of the sampling error,
sequencing error, and other aspects of SAGE experi-
ments (15) may play a role in the development of such
hypothesis tests and the calculation of more accurate P
values.

When only P values are published, it should be noted
that SAGE300 and the Audic and Claverie test, as well
as the conversion from the Z statistic to a P value for
the Kal test and the Madden test, will result in a
one-sided P value. The authors should be aware of this
and should mention whether a one-sided or a two-sided
P value is tabulated (see, for instance, Ref. 8). How-
ever, since in SAGE experiments no a priori knowledge
about the direction of the effects is available, the pub-
lication of two-sided P values would be the most appro-
priate and should be encouraged. This would enable
the direct comparison of published P values with the
required level of significance and simplify the compar-
ison of different papers on the same tissues. However,
the significance of the P value of the observed differ-
ence between tag counts should not be overempha-
sized: the rank order of the P values may well be all the
information the reader needs to pinpoint important
genes and to plan future research.

We thank Drs. Arnoud Kal, Henk Tabak, and Patrick Bossuyt for
help in locating the different statistical tests and Drs. Wout Lamers
and Antoon Moorman for critical comments on the manuscript.

SAGE300 is available from http://www.sagenet.org. The test of
Audic and Claverie (3) is available from http://igs-server.cnrs-
mrs.fr/audic/significance.html. SAGEstat, for the application of
the Z test (7) as well as the calculation of critical values and the
number of tags needed to detect an assumed difference, is available
on request (E-mail: bioinfo@amc.uva.nl; subject, SAGEstat). An R
(S-plus) implementation of SAGEstat, with the possibility to com-
pare public domain SAGE libraries and to plot graphs of the required
number of SAGE tags is incorporated in USAGE (16), which can be
reached at http://www.cmbi.kun.nl/usage/. Another program that
will calculate the number of required tags and perform a chi-squared
test between SAGE libraries is POWER_SAGE (E-mail: michael.man
@pfizer.com; Ref. 12), which is based on Monte Carlo simulations.
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Bossuyt PMM, Voûte PA, and Baas F. Genes differentially
expressed in medulloblastoma and fetal brain. Physiol Genomics
1: 83–91, 1999.

15. Stollberg J, Urschitz J, Urban Z, and Boyd CD. A quanti-
tative evaluation of SAGE. Genome Res 10: 1241–1248, 2000.

16. Van Kampen AHC, Van Schaik BDC, Pauws E, Michiels E,
Ruijter JM, Caron HN, Versteeg R, Heisterkamp SH,
Leunissen JAM, Baas F, and Van der Mee M. USAGE: a
web-based approach towards the analysis of SAGE data. Bioin-
formatics 16: 899–905, 2000.

17. Velculescu VE, Zhang L, Vogelstein B, and Kinzler KW.
Serial analysis of gene expression. Science 270: 484–487, 1995.

18. Vingron M and Hoheisel J. Computational aspects of expres-
sion data. J Mol Med 77: 3–7, 1999.

19. Zhang L, Zhou W, Velculescu VE, Kern SE, Hruban RH,
Hamilton SR, Vogelstein B, and Kinzler KW. Gene expres-
sion profiles in normal and cancer cells. Science 276: 1268–1272,
1997.

44 REVIEW: ANALYSIS AND DESIGN OF SAGE EXPERIMENTS

Physiol Genomics • VOL 11 • www.physiolgenomics.org

 on O
ctober 12, 2007 

physiolgenom
ics.physiology.org

D
ow

nloaded from
 

http://physiolgenomics.physiology.org

