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ABSTRACT
The combination of genome-wide expression patterns
and full genome sequences offers a great opportunity
to further our understanding of the mechanisms and
logic of transcriptional regulation. Many methods have
been described that identify sequence motifs enriched in
transcription control regions of genes that share similar
gene expression patterns. Here we present an alternative
approach that evaluates the transcriptional information
contained by specific sequence motifs by computing for
each motif the mean expression profile of all genes that
contain the motif in their transcription control regions.
These genome-mean expression profiles (GMEP’s) are
valuable for visualizing the relationship between genome
sequences and gene expression data, and for character-
izing the transcriptional importance of specific sequence
motifs.

Analysis of GMEP’s calculated from a dataset of 519
whole-genome microarray experiments in Saccharomyces
cerevisiae show a significant correlation between GMEP’s
of motifs that are reverse complements, a result that sup-
ports the relationship between GMEP’s and transcriptional
regulation. Hierarchical clustering of GMEP’s identifies
clusters of motifs that correspond to binding sites of
well-characterized transcription factors. The GMEP’s of
these clustered motifs have patterns of variation across
conditions that reflect the known activities of these
transcription factors.

Software that computed GMEP’s from sequence and
gene expression data is available under the terms of the
Gnu Public License from http://rana.lbl.gov/
Contact: mbeisen@lbl.gov

INTRODUCTION
As genome sequencing projects move forward at a rapid
pace, and as the use of DNA microarrays and related
techniques becomes more widespread, there is a growing

number of organisms for which both complete genome
sequences and large volumes of genome-wide transcript
abundance measurements are available. An obvious
challenge in the analysis of these data is to understand
the cellular mechanisms used to orchestrate genomic
expression programs. As complex models of transcrip-
tional networks have yet to reach maturity, most recent
research has focused on the more modest goal of using
genome-wide expression patterns and genome sequences
to identifying likely (and ideally previously unidentified)
transcription factor binding sites.

Most common strategies adopt a “group-by-expression”
approach, in which genes with similar expression are
identified, and then their transcription control regions are
analyzed for the presence of shared sequence motifs (re-
viewed in Ohler and Niemann, 2001). These approaches
postulate that genes with similar patterns of expression
are likely to be regulated by common factors, and thus
should share binding sites for these factors in their
non-coding regions. Co-expressed genes are identified
by cluster analysis of gene expression data (c.f. DeRisi
et al., 1997, Spellman et al., 1998, Cho et al., 1998,
Tavazoie et al., 1999, Gasch et al., 2000). Sequences
upstream of co-expressed genes are analyzed for statisti-
cally over-represented sequence motifs using a variety of
algorithms, including: expectation maximization (Bailey
and Elkan 1995), over-represented oligomers (van Helden
et al., 1998, Wolfsberg et al., 1999), weight matrices
(Hertz and Stormo, 1999), Gibbs sampling (Hughes et al.,
2000), enumerative statistics (Sinha and Tompa, 2000),
probabilistic segmentation (Bussemaker et al., 2000), and
sequence pattern discovery (Vilo et al., 2000). As has as
been previously noted (Holmes and Bruno, 2000; Wagner
1999), a problem with this approach is that it does not
take into account the multiple, independent mechanisms
by which most genes are regulated. For example, two
genes can be co-regulated under one set of conditions,
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but differentially regulated under others. Although these
genes would not be easily identified as co-expressed, they
nonetheless share important regulatory information.

An alternate strategy is to adopt a “group-by-sequence”
approach in which the transcriptional control content of
sequence motifs is evaluated on the basis of the expression
patterns of genes that contain the motif in their nominal
transcription control regions (TCR; the adjacent cis-DNA
that is believed to contain sequences that determine the
transcriptional regulation of the gene). If a sequence
motif carries transcriptional information - namely if it is
bound by a transcription factor and this binding alters
the transcription rate of adjacent genes - we expect the
expression patterns of genes that contain this motif in their
TCR’s to have non-random features that reflect the activity
of the corresponding factor. In contrast, if a motif does not
encode transcriptional regulatory information, the genes
that contain the motif in their TCR’s should not have
expression patterns that differ significantly from those of
the entire population of genes.

To evaluate and exploit this expectation, we define the
genome-mean expression profile (GMEP) of a sequence
motif as the mean expression profile of all genes (regard-
less of the expression profiles) that contain this motif in
their TCR’s. To understand the reasons for using GMEP’s,
consider a set of genes whose transcription is increased
by the activity of a given transcription factor in some set
of conditions, but whose expression patterns are other-
wise unrelated. Although the multi-factorial nature of tran-
scription control could easily obscure the commonalities
in these gene expression profiles, we nonetheless expect
that, on average, these genes will have higher expression
levels in the conditions where this transcriptional activator
is active when compared to some randomly chosen subsets
of genes, and we expect the magnitude of this elevation
will reflect the activity level of the activator. Additional
genes that contain this motif in their TCR’s but which
are not regulated by the particular activator should also
have mean expression profiles that are close to the popu-
lation mean profile. Thus, the GMEP of the sequence mo-
tif recognized by the activator should differ significantly
from the population mean profile only when the activator
is present and active and this difference should be greatest
when the activator has its highest level of activity. Note
that this should still be true even if transcription of the
regulated genes is also independently and separately con-
trolled by additional non-overlapping factors.

ALGORITHM
Data
To compute GMEP’s, we begin with a data matrix D with
r rows, each representing a single gene, and c columns,
each representing a single experimental condition. Each

cell Dgj represents the expression level of gene g in
condition j . Missing values are allowed. In the data
used here these values are log-transformed (base 2)
relative expression ratios (compared to a suitable reference
sample) and the columns are mean-centered. For each
gene, we define a sequence S(g) that is the genome
sequence of the gene’s nominal transcription control
region. Note that for most organisms this are no well-
defined rules for identifying TCR’s; for analyses presented
here using the yeast Saccharomyces cerevisiae, S(g) is
the 600 basepairs upstream of the translation start site for
gene g.

Genome-mean expression profiles
For a DNA sequence motif m, let G be the set of genes
that contain this motif in their TCR’s:

g ∈ G ⇔ m ∈ S(g)

Define the genome-mean expression profile of motif m
[denote GMEP(m)] to be the c-dimensional vector equal
to the weighted mean of the c-dimensional vectors that
represent the expression profiles of each gene in G:

GMEP(m) j =

g∈G∑

g
wmg · Dgj

g∈G∑

g
wmg

(1)

where wmg is the number of occurrences of motif m
in S(g). A weighted mean was used since transcription
factors may have a higher affinity to genes that contain
multiple copies of their cognate sites (Wagner, 1999).

For simplicity, here we only enumerate motifs contain-
ing the symbols A, C, G, or T although this is not a nec-
essary constraint. For a given data matrix D and a fixed
motif length L, we compute the

(
4L × c

)
matrix where

each row is the GMEP of a single motif. To correspond
with the data matrix D, the columns in the GMEP matrix
are mean-centered.

Significance testing
To analyze the likelihood that specific values in our GMEP
matrixes are expected to have occurred by chance we com-
pute approximate Z-scores. Consider the calculation of a
GMEP as the mean of a sample (X1, . . . , Xn) of n gene
expression levels drawn randomly (with replacement)
from a population. This population comprises all relative
gene expression measurements from a single microarray
experiment. If a motif does not contain transcriptional
information, the expression levels of genes that contain
this motif in their TCR’s represent a randomly drawn
sample, and the GMEP for this motif should not differ
significantly from the the population mean. Alternatively,

S50



Genome-mean expression profiles

Fig. 1. Distributions of complement correlations for all motif/reverse complement pairs. Correlations between the GMEP for a motif and the
GMEP of its reverse complement were calculated as described. Dashed lines indicate the distribution of Pearson coefficients for randomly
permuted associations between each TCR sequence and a gene expression profile, whereas solid lines indicate the distributions for actual
data. Mean values of the actual vs. randomized distributions: 0.357 vs. 0.009 (length 5); 0.245 vs. −0.006 (length 6); 0.148 vs. 0.003 (length
7); 0.080 vs. −0.001 (length 8).

if a motif does contain transcriptional information, and
the corresponding transcription factor(s) are active, then
we expect the GMEP to be different from the population
mean.

Assume that X1, . . . , Xn are independent and identi-
cally distributed. From the central limit theorem (CLT),
we expect that the sample means of many samples chosen
randomly from a given (microarray) population with
mean µ and standard deviation s will fall on a normal dis-
tribution with mean µ and standard deviation s√

n
. Using

the above sampling distribution as a null distribution, we
can approximate a Z-score for each value in the GMEP
data matrix:

Zmj = GMEP(m) j − µ j

s j/
√

nm
(2)

where nm is the number of observations for motif m that
went into the mean, and µ j and s j are the mean and

standard deviation, respectively, of all relative expression
measurements for microarray experiment j .

However the above assumption may not be valid be-
cause: (1) relative gene expression levels for individual
genes may be correlated; (2) the distribution of wmg is not
uniform across the genome. In this case, the mean GMEP
value is still expected to equal µ, but the standard devia-
tion of the GMEP value will vary. We investigated the vari-
ability of the standard deviation from the predicted value
of s√

n
by permutation tests. For each of 51 hexameric mo-

tifs, a distribution of randomized GMEP values was ob-
tained from 5000 random permutations of the dgj values
for a single experiment. Since the mean and standard de-
viations for these permutation distributions varied by less
than 5% from the values given by the CLT, we assume
that equation (2) provides a good approximation to the Z-
score.

Our GMEP software has an option of filtering entries in
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the
(
4L × c

)
data matrix D according to a user-determined

threshold T . Values of Dgj that have Z-scores between
−T and +T are deemed not significant and are set to zero.

RESULTS
We computed GMEP’s for all motifs of length 5, 6, 7,
or 8 nucleotides in length using an input gene expression
dataset of 517 different DNA microarrays, each containing
∼5300 yeast genes (overlapping genes and duplicated
genes were not included in this analysis). This dataset
comes from the Stanford Microarray Database (Sherlock
et al., 2001) and includes the published results of DeRisi et
al., 1997; Spellman et al., 1998; Chu et al., 1998; Gasch et
al., 2000; Ogawa et al., 2000 and some unpublished results
that will be described in a forthcoming publication.

Many asymmetric transcription factor binding sites
confer similar regulation irrespective of their orientation
relative to the target gene. If GMEP’s reflect transcrip-
tional regulation associated with a sequence motif, then
we would expect GMEP’s for many bona fide regulatory
motifs to be highly correlated with the GMEP’s of their
reverse complements (note that in computing GMEP’s we
only use motifs found on the positive strand of adjacent
non-coding DNA, so there is no a priori expectation that
GMEP’s of reverse complementary motifs should be cor-
related). We computed the correlation between all motifs
and their reverse complements (excluding motifs that
are self-reverse complements) using the GMEP matrixes
described above, and compared the results to a negative
control in which the associations between TCR-sequences
and gene expression vectors were randomly permuted.
Since this control maintained the same set of expression
profiles and regulatory sequences (only the assignment
of the expression profiles to each motif were permuted)
effects due either to the expression patterns themselves
or to the distribution of motifs in non-coding sequences
would be found in both the real and permuted data.

Figure 1 shows the histograms of reverse-complement
correlations for motifs of lengths 5, 6, 7, and 8. As
expected, for all of these motif lengths, the distributions
of reverse-complement correlations for the randomly
permuted datasets resembled normal distributions with
mean values close to zero. In contrast, when the correct
associations of gene expression data were used, there
was a striking shift in the distribution of complement
correlations towards positive correlations, with a distribu-
tion mean ranging from 0.357 (motif length 5) to 0.080
(motif length 8). The positive correlations in the GMEP’s
between many of the motifs and their reverse comple-
ments support the assumption that many regulatory motifs
encode information when present on either of the DNA
strands and validates the biological relevance of GMEP’s.

The distributions of reverse-complement correlations

Fig. 2. Position-dependent effects of shifts in the complement
correlation distribution. Mean values were calculated for reverse-
complement correlation distributions in 100 bp windows at varying
distances away from the translation start site. The dashed line
represents the mean of mean values obtained from five different
trials in which the association between each non-coding sequence
and gene expression level was randomly permuted. The error bars
indicate the standard deviation for these five trials. The solid line
represents the mean values of the reverse-complement correlation
distribution for actual data.

displayed motif-position dependence. We computed the
distribution of reverse-complement correlation values for
hexameric motifs found in 100 bp windows between
−1000 and +1000 bp relative to the translation start
site. Figure 2 shows the reverse-complement correlations
associated with motifs found at different positions. The
highest reverse-complement correlations occur for motifs
found between −100 and −200 of the translation start site,
while the reverse-complement correlation decays to near-
background as the distance from the start site increases.
This result agrees with other data on the positional
distribution of transcriptionally active transcription factor
binding sites (Wolfsberg et al., 1999).

We chose to examine in more detail the data for all 4096
possible hexameric motifs. After calculating the GMEP
associated with each motif, we then organized this data
using hierarchical clustering (Eisen et al., 1998). The
logic of applying clustering to GMEP’s was that motifs
that encode similar regulatory information would display
similar GMEP’s and would thus be clustered together,
and that motifs within a cluster might comprise different
submotifs of a single consensus binding site. The clustered
GMEP matrix for motifs of length six is available at http:
//rana.lbl.gov/.

We found that examining the clustered GMEP data
in TreeView (Eisen et al., 1998), provided an efficient
way to visually identify clusters of motifs associated with
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Table 1. Examples of sequences that regulate gene expression in many conditions. Consensus sequences were assembled from the individual motifs comprising
clusters that were selected using the criteria described in the text. Cluster correlation refers to the Pearson correlation among normalized GMEP’s for all motifs
found in the cluster. The mean complement correlation refers to the mean value for the Pearson correlation between the GMEP of each motif found in the
cluster with the GMEP of its reverse complement. The number of motifs in each cluster is indicated in parentheses.

Consensus Sequence Transcription Cluster Mean complement Characteristics
R = [A/G]; S = [C/G];W = [A/T] factor correlation correlation of GMEP

TGAAAATTTT RRPE1 0.974 0.977 (n = 4) Generally repressed
AWTTTTCWTTT RRPE1 0.963 0.809 (n = 14) Generally repressed
SCACGTG Pho42 0.775 0.628 (n = 6) Induced in �pho80, �pho85 mutants
TGASTCA Gcn42 0.751 0.698 (n = 3) Induced during amino acid starvation
AGGGG STRE 0.897 0.880 (n = 26) Induced during stress
ARGGGAWA STRE 0.840 0.794 (n = 15) Induced during stress
CAG[C/A]GATGAG[C/A]T Unknown3 0.834 0.880 (n = 20) Repressed during stress
WCGCGW MCB4 0.814 0.757 (n = 11) Cell cycle periodicity
GATAAG MET2 0.810 0.854 (n = 2) Induced during amino acid starvation

1Hughes et al., 2000, 2van Helden et al., 1998, 3Gasch et al., 2000, 4Spellman et al., 1998.

biologically interesting expression patterns. The software
and processed GMEP data are available at http://rana.
lbl.gov/. We used two stringent heuristic criteria for
identifying “interesting” motif clusters: (1) the GMEP’s
within the clusters had correlations with each other of
greater than 0.75; and (2) the motifs within each cluster
were orientation-independent (i.e., each cluster containing
at least one reverse complement pair with a correlation
greater than 0.7). Table 1 lists nine separate motif clusters
that met these criteria. Each of these clusters contains
previously-identified promoter motifs, including the MCB
element bound by the MBF transcription factors, the
STRE element recognized by the Msn2p and Msn4p
transcription factors, and a site involved in environment
stress response that has been previously identified but
whose putative binding factor remains unknown. Figure
3 shows the GMEP clusters associated with these motifs.
These GMEP profiles reflect conditions in which these
transcription factors are known or believed to be active.
Further analysis of numerous other apparently significant
GMEP’s is underway.

DISCUSSION
Genome-mean expression profiles represent one of sev-
eral alternatives to “group-by-expression” approaches for
analyzing gene expression data. Rather than look for sta-
tistical over-representation of sequences in a fixed subset
of genes, these alternative methods introduce conceptual
models that underlie microarray data. Holmes and Bruno
(2000) have developed a likelihood framework to consider
similarities in both sequences and gene expression pro-
files at the same time. The clustering of genes can thus by
guided by choosing the most likely sequence-expression
model that yields the observed gene sequences and gene
expression levels. Bussemaker et al. (2001) use a regres-

sion method to fit gene expression data to a multivariate
linear model. Significant motifs are defined to be those that
yield the largest reduction in the χ2 statistic.

The genome-mean expression profile introduced here
is a simple and straightforward tool for assessing the
information content of sequence motifs. The underlying
model is a simple one. However, the observed corre-
lation between reverse-complement pairs, the striking
position-dependence of this correlation, and the success in
identifying many known transcription factor binding sites
strongly support continued analysis of the current data
and the development of more sophisticated derivatives.
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