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Proteomics has begun to provide insight into the biology of
microorganisms. The combination of proteomics with genetics,
molecular biology, protein biochemistry and biophysics is
particularly powerful, resulting in novel methods to analyse
complex protein mixtures. Emerging proteomic technologies
promise to increase the throughput of protein identifications
from complex mixtures and allow for the quantification of
protein expression levels. 
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Introduction
In the post-genomic era, innovative methods of analysis
are needed to determine protein functional information on
a large scale with high throughput. Proteomics evolved
from this need, resulting in novel investigations into the
expressed proteins of an organism. The characterization of
a proteome by itself is merely the first step. Combining
proteomic technologies with genetics, molecular biology,
protein biochemistry and/or biophysics has resulted in
accelerated discovery of protein functional information. A
standard proteomic analysis of an organism begins with the
isolation of its soluble proteins, followed by the separation
and visualization of the protein mixture by two-dimen-
sional (2D) gel electrophoresis (Figure 1). Although
powerful, there are several limitations to 2D gel elec-
trophoresis. Besides being time-consuming and laborious,
2D gels rarely identify low-abundance and hydrophobic
proteins. Methods of proteomic analysis are being devel-
oped to gain access to these classes of proteins and to
accelerate the speed of discovery. Finally, quantitative
methods are being developed, allowing for relative protein
abundances to be determined. This review presents and
discusses a wide variety of proteomic applications to micro-
biology from the past year. In addition, novel high
throughput separation and quantitation methods are dis-
cussed which may revolutionize proteomics.

2D gel electrophoresis and microbial proteomics
The basic goal of a proteomic study is to identify proteins
in an organism involved in a particular process. Generally,
an organism is grown under different experimental condi-
tions and abundant proteins of each sample are resolved on

separate 2D gels (Figure 1). After comparison of the gels,
the protein identities of selected spots are determined,
providing insight into the protein expression changes
resulting from the experimental conditions (Figure 1).
Using this methodology, protein functional groups have
been identified from Bradyrhizobium japonicum grown
under anaerobic and aerobic conditions [1] and stressed by
heat shock [2•]. In addition, Guerrerio et al. [3] determined
the changes in protein expression patterns of
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Figure 1

Standard proteomic analysis of a protein mixture. After a complex
protein mixture, such as a protein complex or whole-cell lysate, is
prepared, the proteins are separated and visualized by either 1D or 2D
gel electrophoresis. Individual spots from the gel are excised and
digested. After extracting the peptides from the gel matrix, the spots
are analysed by matrix-assisted laser desorption ionization–time-of-
flight (MALDI–TOF) mass spectrometry or capillary liquid
chromatography, followed by tandem mass spectrometry (LC/MS/MS).
The protein identities are determined in MALDI–TOF by peptide mass
mapping, and in LC/MS/MS by correlating tandem mass spectra of
fragmented peptides to protein sequence databases.
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Sinorrhizobium meliloti from early exponential phase to late
exponential phase, and Vasseur et al. [4] investigated the
alterations in protein expression of Pseudomonas fragi
grown under a variety of stressful conditions, including
osmotic shock, pH, biocide and combined treatments.
Successfully yielding novel insights into the biology of
microorganisms, a review of the applications of this
methodology to several microbial organisms has recently
been published [5•].

The emergence of antibiotic resistance in an alarming num-
ber of human pathogens has necessitated research into
microbial pathogenicity. Proteomics has facilitated the
determination of changes in an organism that lead to path-
ogenicity, antibiotic resistance and/or an immune response.
Proteomic analyses of Candida albicans pathogenicity have
recently been reviewed [6] and additional research has
identified several immunogenic proteins of C. albicans in
human sera [7]. Other investigators have identified
immunoreactive proteins of Chlamydia trachomatis [8] and
alterations in protein expression levels in Streptococcus pneu-
moniae resulting from erythromycin resistance [9]. In
comparative proteome analysis, the proteomes of different
strains of micro-organisms are resolved and compared.
When applied to Mycobacterium tuberculosis and
Mycobacterium bovis BCG strains, proteins differing in inten-
sity or position were identified, providing insight into the
differences in pathogenicity of these two Mycobaterium
strains [10••]. The goal of these applications of proteomics
is to identify proteins involved in the disease process, hope-
fully leading to the development of medical intervention. 

Proteomics combined with modern biological
tools
The real power of proteomics arises when proteomics is
combined with genetics, molecular biology, protein bio-
chemistry and/or biophysics. Combining proteomics with
molecular biology and yeast genetics, Lee et al. [11••] deci-
phered the separate roles Yap1 and Skn7 play in the
oxidative stress response, and Alms et al. [12•] identified
physiological phosphosubstrates of the phosphorylated
protein phosphatase 1-phosphorylated Reg1 complex, a
complex involved in the regulation of glucose repression
pathways. Additional studies utilizing proteomic technolo-
gies, protein complex purification and yeast genetics
identified proteins involved in actin assembly and cross-
linking [13], a novel component of the mitochondrial
nucleoli required for mitochondrial DNA repair [14], and
components of a yeast histone acetyltransferase com-
plex [15]. Rigaut et al. [16•] developed a generic protein
complex purification method in yeast that they have
applied to characterize yeast small nuclear ribonucleic acid
particles, complexes involved in mRNA splicing [17,18]
and the DEAD-box protein Dbp5 [19]. By combining pro-
teomics and structural biology, Houry et al. [20••]
identified 52 of the in vivo substrates of the E. coli chaper-
onin GroEL, a protein involved in the folding of newly
translated polypeptides, and determined the common

structural motifs of 24 of the protein substrates. Without
proteomics, studies of large protein complexes on the scale
undertaken by Houry et al. are not possible.

Protein databases and proteomics
Perhaps the most detailed proteomic analysis has been
applied to Saccharomyces cerevisiae. The most recent update
of its proteome stands at 279 different gene products from
401 different spots on a 2D gel [21]. Because of the amount
of information known about S. cerevisiae, there are databas-
es cataloging all of the known yeast proteins into functional,
protein and subcellular localization classes (MIPS [22•] and
the Yeast Proteome Database [23•]). A proteomic analysis of
S. cerevisiae can then be easily correlated to these classes,
rapidly identifying protein classifications. 

Utilizing the detailed genomic and proteomic information
available regarding S. cerevisiae, investigators have analysed
the correlation between mRNA and protein abundance.
On the basis of a logarithmic analysis, Futcher et al. [24••]
discovered that the protein abundances of 148 proteins
correlated with mRNA abundance and their respective
codon adaptation index values. Future studies attempting
to correlate mRNA, codon adaptation index values and
protein expression levels in other organisms will provide
valuable insight into the organization and expression of
genomes and may result in the elucidation of common
rules governing protein expression.

Proteomics on the internet
As proteomes of organisms continue to be characterized,
there is a major effort to make this information readily
available on the Internet. Recent updates of many micro-
bial proteomes, including those of the cyanobacterium
Synechocystis [25], S. cerevisiae [21], M. tuberculosis and
M. bovis [26,10••], are all available as interactive web data-
bases. Cordwell et al. [27] have recently described an
approach to integrate all the information generated at the
Australian Protoeme Analysis Facility for E. coli,
Pseudomonas aeruginosa and Staphylococcus aureus. After
many proteomic analyses not all of the information can be
presented in a publication and must be available in some
other form — the Internet is an ideal tool for this purpose. 

Shortcomings of 2D gel electrophoresis
In spite of the enormous value and amount of information
that 2D gel electrophoresis has generated in the field of
proteomics, there exist many shortcomings of this tech-
nology. Even though up to 1400 spots can be resolved on
a gel, in every study to date many more spots are resolved
than are actually identified. For example, in the study cor-
relating mRNA abundance and protein expression in S.
cerevisiae, Futcher et al. [24••] resolved 1400 spots, but
only identified 148 different proteins from 169 spots. With
a genome of approximately 6000 proteins, their conclu-
sions were based on 2.5% of the yeast proteome. Analysis
of 1400 spots is time-consuming because each spot must
be extracted, digested and analysed individually.



Significant portions of proteomes, especially low-abundance
proteins and membrane-associated or -bound proteins, are
rarely seen in a 2D gel electrophoresis study. Several
attempts have been made to enrich a fraction of a proteome
using pre-gel chromatography, to identify low-abundance
proteins. Fountoulakis et al. [28] loaded a hydroxyapatite
column with E. coli cell lysate and identified 269 proteins
from 800 spots from the column eluate. Of these, 130 pro-
teins, including several low-abundance proteins, had not
been previously detected by 2D gel electrophoresis [28]. In
an additional study, Fountoulakis et al. [29] enriched a
Haemophilus influenzae sample for low-abundance proteins
using hydrophobic interaction chromatography. In both
cases, only proteins that bound to the column matrix were
enriched, and this included both high- and low-abundance
proteins. Although targeted enrichment is promising, a gen-
eral methodology should be able to detect and identify
larger numbers of low-abundance proteins.

Problems with solubilization of entire membrane proteins
prior to loading onto a 2D gel prevent their identification,
and recent advances in membrane-protein solubilization
for proteomics have been reviewed [30]. Promising meth-
ods include extracting E. coli membrane proteins with
organic solvents, followed by solubilization with deter-
gents prior to loading onto a 2D gel [31] and synthesizing
novel zwitterionic detergents designed to work in conjunc-
tion with strong chaotropic agents [32]. Very few
membrane proteins have been identified on 2D gels to
date, and this is an area in need of further development.

Emerging separation methods for proteins
The difficulties of detecting and identifying low-abundance
and membrane-associated proteins have necessitated the
development of novel technologies for the resolution of
these proteins. These methodologies are proving to be
both reproducible and higher in throughput than 2D gel

electrophoresis. Capillary isoelectric focusing (for a review,
see [33]) coupled with mass spectrometry (MS) has been of
limited use in separating complex mixtures of the order of
entire proteomes [34] but may potentially allow for rapid
identification of up to 1000 proteins [35]. When applied to
smaller complex protein mixtures, such as the ribosome,
capillary electrophoresis with solid-phase extraction, cou-
pled with MS, detected and identified 80–90% of the
S. cerevisiae ribosome [36].

In an alternate approach, a digested complex is loaded
directly onto packed capillary columns that elute direct-
ly into an electrospray ionization ion-trap mass
spectrometer (Figure 2). The capillary columns are
packed with strong cation exchange and reverse phase
matrix material (Figure 2). The peptides are sequential-
ly eluted off to the capillary column and fragmented in
the mass spectrometer, and advanced search algorithms
then match the fragmented peptides to their respective
proteins in a database. Using this approach, Link et al.
[37••] identified 75 of the 78 predicted proteins from
purified yeast ribosomes and discovered a novel protein
in the yeast ribosome. Furthermore, they identified 189
unique proteins from a yeast whole cell lysate [37••].
Already less time-consuming than spot-by-spot identifi-
cation, further optimization of this system may allow for
up to 2000 proteins to be detected and identified in a
single experiment.

Quantitative proteomics
Two new quantitative proteomic methods have been
developed in the past year (reviewed in [38•]). Pása-Tolic′
et al. [39] and Oda et al. [40•] developed methods to meta-
bolically label proteins by growing cells with either 15N or
14N as the sole nitrogen source. Identical proteins from
each sample are either ‘heavy’ or ‘light’, allowing for the
relative quantity of a protein between the two samples to
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Figure 2

Proteomic analysis by multidimensional
protein identification technology [37••].
A complex mixture of proteins is digested and
directly loaded onto a capillary column packed
with strong cation exchange (SCX) and
reverse phase (RP) column matrix material.
Peptides are sequentially displaced form the
SCX phase into the RP, where they are eluted
directly into a mass spectrometer. Protein
identities are determined by correlating the
tandem mass spectra of fragmented peptides
to protein sequence databases.
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be determined by MS. Oda et al. [40•] grew two yeast
strains, one knocked out for the G1 cyclin Cln2, under
identical conditions (except that the only nitrogen source
for one of the strains was 15N). After pooling the two sam-
ples, the whole-cell extract was fractionated by
high-pressure liquid chromatography and resolved by
sodium dodecye sulfate/polyacrylamide gel electrophore-
sis. Bands from the gel were excised and digested, and
the protein’s identities were determined by MS. The
mass differences of identical peptides from each sample
allowed Oda et al. to determine the relative abundance of
12 proteins in each sample [40•]. Although powerful, the
shortcoming of metabolic labeling is that it is limited to
species that can be grown under such conditions.

Gygi et al. [41••] have developed a general quantitation
method for proteomics in which cysteine residue of pro-
teins were isotopically labeled after cell growth (Figure 3,
[41••]). After growing yeast on either ethanol or galactose
(as the carbon source), the proteins from each growth con-
dition were isolated and the cysteine residue were
modified with either a ‘heavy’ or ‘light’ reagent (Figure 3).
Gygi et al. [41••] then determined the percentage changes
in specific protein levels resulting from the different car-
bon sources. Unlike metabolic labeling strategies, this
method can be applied to any system because the proteins
are modified after cell growth.

Conclusions
Proteomics has allowed novel investigation of the biology
of micro-organisms. The combination of proteomics with
other tools available to the modern biologist is an espe-
cially powerful approach. However, there is still a need for
further technological development, and the current tech-
nology is under utilized. For example, proteomic
approaches to detecting and identifying post-translational
modifications are just beginning to emerge with new soft-
ware developments [42•]. Two proteomic analyses of
phosphorylation in mouse fibroblasts have been carried
out [43,44], but this is a dramatically under-represented
area, especially in microbial proteomics. Owing to the
shortcomings of 2D gel electrophoresis, technological
advances, such as capillary electrophoresis coupled to MS,
are being pursued to dramatically increase the throughput
of a proteome analysis. Finally, with the advent of quanti-
tative proteomics, novel research analysing the alterations
in cellular protein levels is possible. In the future, when
the proteomics researcher is able to determine the relative
quantity of 2000 proteins in a sample, proteomics will
become as important to biology as quantitative analysis of
gene expression.

Update
See [45••, 46•] for two recently published papers. Rout
et al. [45••] combine proteomic methods with molecular
biology and immunolocalization to map the nuclear pore
complex in yeast and propose a detailed transport mecha-
nism. Langen et al. [46•] use a comprehensive 2D

gel/proteomics project to detect and identify 502 proteins
from the proteome of Haemophilus influenzae.
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Figure 3

Quantification of differential protein expression by isotopic
labeling [41••]. Cells are grown under two different conditions
expected to alter protein expression levels. The cysteine residues of
the proteins from each cell growth condition are tagged with either an
isotopic or nonisotopic label. After the tagging, the two fractions are
mixed, digested and analysed by MS. The peak ratios of identical
peptides from each growth condition yield relative quantification
information. The tandem mass spectra of the peptides are matched
against predicted spectra from protein sequence databases yielding
the protein’s identity.
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Again using isotopic labeling, Gygi et al. developed a general method of quan-
titative proteomics. After growing yeast on either ethanol or galactose (a car-
bon source), the cysteine residues of each sample were modified by a ‘heavy’
or a ‘light’ reagent. Again, the resulting mass difference of identical peptides
from each sample allowed for the relative abundance of proteins in each sam-
ple to be determined by mass spectrometry. Because the isotopically labeled
reagent is added after cell growth, this method can be applied to any system.
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Few proteomic approaches to post-translational modifications have been
carried out. Part of the problem has been the lack of high-throughput soft-
ware tools to interpret mass spectrometry data. Wilkins et al. have designed
a software tool — FindMod — that can simultaneously search for 22 different
post-translational modifications. Although it has only been applied to individ-
ual proteins, FindMod may allow for high-throughput identification of post-
translational modifications.
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By combining proteomic methods with molecular biology, and immunolo-
calization, Rout et al. mapped the nuclear pore complex in yeast and pro-
posed a detailed transport mechanism. They first separated proteins from a
highly enriched nuclear pore complex fraction by HPLC and SDS–PAGE.
Proteins were digested and their identities determined by mass spectrom-
etry. From an initial set of 174 identified proteins, they searched databases
to determine the function and localization of as many proteins in this set as
possible. Several proteins were obviously contaminants, but they carried
out classification assays to determine that about 30 of the remaining pro-
teins were part of the nuclear pore complex. Tagged proteins were localized
by immunoelectron microscopy and they generated a stoichometric map of
the nuclear pore complex. This is a remarkable study that demonstrates the
true power of proteomics when it is combined with other methods available
to modern biologists.
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In an impressive long-term study, Langen et al. detected and identified 502
proteins from the proteome of Haemophilus influenzae. They utilized sev-
eral different types of 2D gels to visualise large amounts of proteins from
specific pH regions and proteins from the cell envelope. Furthermore,
Langen et al. detected and identified many low abundance proteins by
enriching fractions via several chromatographic methods. This is one of the
most comprehensive 2D gel/proteomics projects to date, and an excellent
model for future comprehensive analysis of proteomes.
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